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Abstract— In this paper we introduce a novel approach for the
routing problem in wireless ad hoc networks. Our approach is
based on the analogy of the routing problem to the distribution of
electric field in a physical media with a given density of charges.
We show that the throughput can be significantly increased by
choosing routes in such a way that the traffic is spread as
uniformly as possible throughout the network. Achieving this
uniform spreading requires solution of a set of partial differential
equations similar to Maxwell’s equations in the electrostatic
theory. While the main focus in the paper is on the case in which
many sources communicate with a single destination, extension
to the case of multiple destinations is also described.

I. I NTRODUCTION

Wireless ad hoc networks have received much attention in
recent years. These networks have no infrastructure and the
design of network protocols should be such that the nodes
can be able to find the proper routes to their destinations
and identify a good network topology. In these networks,
nodes relay the packets of the other nodes toward the desired
destination. A random access scheme is generally used as
the MAC layer for these networks, but since the transmission
range of the nodes is limited, a collision only happens when
two simultaneously transmitting nodes are close enough to
each other. When we have several nodes competing for the
resources, it is logical to make the competing nodes as apart
from each other as possible; the main idea of our work is to
route different flows in the network in a way that the network
load is as uniform as possible to reduce the rate of collisions
and achieve a higher throughput in the network. We will define
an abstract concept calledloadbased on the location of sources
and destinations and the amount of bandwidth needed by each
flow. We develop the mathematical formulation of the load,
and then we explain how it can be used to solve the routing
problem. It will be shown that the optimal distribution of the
load in the network leads us to a set of partial differential
equations similar to those governing distribution of electric

field in a physical media in the context of electrostatic
theory.
Link state and distance vector are the conventional methods for
the purpose of routing in the data networks [5]. Modifications
to these methods have been done to use them in wireless
ad hoc networks. Fisheye State Routing [6] [7] and Ad Hoc
On Demand Distance Vector [8] are among the proposed
protocols. A good survey on the routing schemes of wireless
ad hoc networks can be found in [4].

This work was partially supported by AFOSR under contract
F496200210217.

There is another class of routing protocols that make use
of the geographical information of the wireless nodes. In
Location Aided Routing [9] the routes are established on
demand from the source node. The location information is
used to limit the nodes that perform the flooding mechanism
for route discovery. Distance Routing Effect Algorithm for
Mobility [11] also uses the location information for routing.
In this approach each node keeps a location table that stores
and updates the location of all nodes in the network. Each node
periodically sends a message to the other nodes and advertises
its location information. The frequency of updating depends on
the distance of the nodes and the rate of mobility. The location
information is used to relay packets through the nodes that are
in the direction of the destination.

We start with a network of wireless nodes with no mobility,
known traffic demands for each sources-destination pair and
known physical location of sources and destinations. Further-
more, we assume this information is available at a central
route server that can compute and assign the routes to the
different source-destination pairs. These assumptions may be
reasonable for sensor networks. For other applications, these
assumptions are somewhat restrictive, but we use them for
this initial work on electrostatic routing, and we expect to be
able to relax them in future work. For example, location of
sources and destinations and the demand information might
be advertised through the network by using some flooding
mechanism, leading to distributed computation of routes.

When we have a request for communication at a source
node, we can consider the source node as a source of load.
Since the source is away from its destination, there is a need
for communication resources in the space between the source
and the destination. Generally the intermediate nodes in the
network are needed to contribute transmission of data, so the
demand of a source-destination pair imposes some load in the
intermediate nodes as well; the way this load is distributed
in the network depends on how the data is routed from the
source to the destination geographically. One feature of our
work is that we define the load as a function of space and not
as a function of node.

We introduce a novel approach to solve the routing problem
in the network by formulating it as an optimization problem.
We make use of the concept of vector fields to define the
load at every place of the network and show that this vector
field will be conservative under certain assumptions. By using
this conservative vector field we define a very powerful tool
for routing by writing it as the gradient of a scalar potential
function. The routing of packets to each destination is done



based on the value of this potential function on each node
and its value on the neighboring nodes. In this paper our
primary focus is on themany-to-one scenarioin which many
sources want to send their data toward a single destination.
Our results show considerable improvements in the network
performance in terms of throughput for this case. Then we
generalize our approach to themany to manyscenario in which
every arbitrary pair of nodes can communicate with each other.

The remainder of the paper is organized as follows. In
Section II, we define the concept of load and the mathematical
framework of using vector fields to formulate it and clarify the
main concept by an example. In Section III we generalize the
definition of the load vector field given in Section II and state
the optimization problem for uniform load distribution. We
solve the problem for many-to-one communication first, and
then we extend our approach to the general case. In Section IV,
we will define an example scenario and show the numerical
results of solving the partial differential equations that give the
optimal distribution of the load in the network. This section
also contains the results of some simulation experiments to
evaluate our approach.

II. M ATHEMATICAL FORMULATION

Consider a network withN wireless nodes that can com-
municate with each other through radio links. The nodes are
randomly placed in a regionA in the plane. Assume there
are M source-destination pairs, denoteds1, ..., sM . Source-
destination pairsi has a bandwidth demand which we refer
to as itsweightand denote byWi. Suppose that one or more
paths in the plane are chosen for eachsi. Each path starts at
the source node and ends at the destination node ofsi. The
weight Wi is partitioned into amounts that are assigned to
the paths. The weight assigned to a particular path indicates
the amount of demand that is desired to follow that path.
It should be noted that the chosen paths are not constrained
by the location of intermediate nodes. Instead, the paths are
‘abstract’ paths in the plane that represent desired paths for the
transit of packets. For communication to occur, each abstract
path must be approximated by an actual path consisting of
a piecewise linear multihop path connecting the source and
destination through a sequence of of intermediate nodes.

Given a set of weighted (abstract) paths for each source-
destination pair, we define a vector field onA which we
refer to as theload densityvector field and denote by~D.
~D represents the flux density of the weighted paths for the
source-destination pairs. Given a point(x, y) ∈ A, we choose
a small area element at(x, y). For each path that intersectsS,
we take the tangent vector to the path and scale it so it has
magnitude equal to the weight of the path. Adding up these
scaled tangent vectors, dividing by the area ofS, and letting
the area element go to zero gives the value of~D at (x, y). A
problem with this definition is that since there are only finitely
many source-destination pairs, and hence only finitely many
paths,~D will be 0 except on a set of measure zero. How this
issue is resolved is described below.

We will continue the discussion of the load density vector
field temporarily focusing on the special case where the path
for each source-destination pair is the line of sight path
between the source and destination. In this case~D is obtained

Fig. 1. The illustration of defining the load density vector field based on the
line of sight.

by adding up the weights of all source-destination pairs whose
line of sight passes through a geographic set in the network
and divide it by the area of that set. In other words:

~D = lim
|S|→0

1
|S|

∑

Li∩S 6=∅
Wi l̂i (1)

in which S is a connected area in the network,Li is a set
representing the points residing in the straight line connecting
the ith source-destination pair, and̂li is a unit vector in the
direction of the line of sight of theith source-destination pair
pointing toward the destination. The above definition has been
illustrated in Figure 1. Note that~D is a function of the position.

The definition of ~D given by equation (1) satisfies the
following equation:

∮

C

~D · ~dn = w (2)

in which the integral is over a closed contourC, ~dn is a
differential vector normal to the contour at each point of its
boundary, dot represents the inner product of vectors in two
dimensional space, andw is the algebraic sum of the weights
of the sources and destinations inside the closed contour.
In calculatingw we count the weights of the sources with
a positive sign and the weights of the destinations with a
negative sign. Equation (2) is analogous to Gauss’s law in
the electrostatic theory.

Now we define another variable that represents the density
of sources in the network and denote it byρ. In other words:

ρ = lim
|S|→0

1
|S|

∑

ui∈S

sgn(ui)Wi (3)

in which ui is either a source or a destination with weightWi,
and sgn(ui) is 1 if ui is a source and−1 if ui is a destination.
With this definition equation (2) can be expressed in partial
differential equation form:

~∇ · ~D = ρ (4)

where ~∇ is defined as:

~∇ =
∂

∂x
î +

∂

∂y
ĵ (5)

in which x and y represent the variables in the Cartesian
coordinate frames, and̂i andĵ represent the unit vectors along
x andy axes respectively.

Mathematically, if the number of source-destination pairs
is finite, the values of~D andρ defined by equations (1) and
(3) will be zero except for a set of measure0. In practice
we do not need to have large a number of source-destination
pairs; we can define a small enough lower bound on the
value ofS depending on the required accuracy of defining~D.
For example, the network terrain can be divided into small
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Fig. 2. A situation in which cancellation happens; in this case the value of
~D does not represent the actual value of load in the network

rectangles via vertical and horizontal grids, andS can be
defined as any of these rectangles. In this example the accuracy
of ρ and ~D depends on the size of rectangles, and the value
of these variables will be constant on each rectangle, so we
deal with a discrete version of equations and operators. For
example the partial derivative inx direction will be written in
terms of the difference of the value of~D on adjacent horizontal
rectangles and the distance between the rectangles. For the
sake of simplicity, in the rest of this paper we assume that the
size ofS is small enough so that we can deal withρ and ~D
as continuous variables.

A problem of the above formulation and definition of~D
is that the amount of load obtained from equation (1) may
not reflect the actual need for communication resources in the
network. Consider a situation in which we have two source-
destination pairs that their line of sight intersect with each
other but they are heading in opposite directions. In this case
the opposite loads might cancel out each other. This situation
has been illustrated in Figure 2. This issue may be resolved
by partitioning the set of source-destination pairs into groups
and putting the cancelling pair in different groups. Each group
has its own load vector field. We will see how we can deal
with this issue in the next section.

III. U NIFORM LOAD DISTRIBUTION AND ROUTING

Given a set of desired paths for each source-destination pair,
we obtain a load density vector field~D as explained in the
preceding section. In the special case where the desired paths
follow line of sight, ~D satisfies the following equations

{
~∇ · ~D = ρ
Dn(z) = 0 for z ∈ Boundary of A

(6)

in which A denotes the geographical set that contains the
network andDn(z) denotes the normal component of~D on
the boundary ofA. The first equation in (6) is the natural
limitation imposed by the sources and the destination. The
second equation comes from the fact that no load is desired
to exit the geographical area of the network or enter into it
through the boundary.

It is straightforward to show that for any load density vector
field (not necessarily line of sight), equations (6) are satisfied.
In fact, an alternative definition of a load density vector field
is any vector field satisfying these equations. The original
definition ~D in the preceding section started with a set of
desired paths and obtained from that the vector field. Using
the alternative definition, we will be able to generate a set of
desirable paths by imposing conditions that together with (6)
uniquely specify~D, and then deriving the paths from~D.

We approach the problem in two steps. First we consider
a many-to-one communication scenario. Then we apply the

results of the many-to-one case scenario to the general case in
which every two arbitrary nodes can communicate with each
other.

A. Many-to-One Scenario
In this scenario there is only one destination in the network
with which all sources communicate. A practical example
of a many-to-one scenario is the case in which the nodes
in a big network are divided into many clusters, and each
cluster has a clusterhead [13]. Each node in a cluster needs to
send its data to the clusterhead in order to communicate with
nodes in other clusters. The communication directed from the
cluster nodes to their clusterhead is an example of many-to-
one communication.

In the many-to-one scenario, if we have a~D that satisfies
equations (6), we can find the routes that can be used to send
the traffic of sources to the destination. In order to define the
routes based on the values of~D, we need to define the concept
of load flow lines. These lines are similar to the electric flux
lines in electrostatic theory [1] [2]. The load flow lines are a
family of two dimensional curved lines that are always tangent
to the direction of the~D and their orientation is the same as
the orientation of the~D. The load flow lines cannot intersect
except at a source or the destination; if they intersect, at the
point of intersection the direction of the field would not be
single-valued. The other property of the load flow lines is
that these lines always start at the sources and end at the
destination; this fact is because the value of divergence in
equations (6) is positive at the sources, and it is negative only
at the destination.

We use the concept of the load flow lines to derive routing
from ~D. If we are at a source likeSi, we can start a short range
transmission along the direction of one of the load flow lines
going out of this source. We assume the nodes are densely
distributed in the geographical area of the network, such that
a node like nodeR1 exists such that the line connectingSi to
R1 is close enough to the load flow line. NodeR1 continues
relaying the packet ofSi by sending it to another node lineR2

in the direction of the load flow line. By using this mechanism
and considering the fact that the load flow lines always end at
the destination we are guaranteed to send the packets of the
sources to the destination. This scheme has been illustrated in
Figure 3. In this figure the solid curve shows the direction of
a typical load flow line. As it has been shown, this load flow
line has been approximated by a sequence of wireless links
between nodes.

One issue that must be resolved regarding the above ap-
proach for routing is that theoretically it might happen that
infinitely many load flow lines might start from each source,
and we should solve the problem of which load flow lines
should be chosen for the purpose of routing. If we can create
P paths from the source to the destination, we propose to pick
P load flow lines that start at the source and depart from the
source in different and evenly spaced directions. For example
if P = 8, the angle between successive load flow lines at the
source is360◦/8 = 45◦. In this example the source breaks
its traffic among8 paths. The amount of traffic assigned to
each path is proportional to the magnitude of the~D at the

3



Fig. 3. Approximating the path given by a load flow line by the links made
by the relaying nodes.

source along load flow line corresponding to that path. Based
on the fact that there is only one destination in the network
for the many-to-one scenario, the cancellation problem that we
discussed in the previous section does not exist for this case.

So far we have established the basic concept of load vector
field, and described its connection to routing in the many-to-
one scenario. Thus, given~D, we can obtain routes. However,
equations (6) do not specify~D uniquely. The remaining issue
is to decide what additional condition(s) to place on~D so
the resulting vector field generates a desirable set of routes.
The intuition we follow is that by making~D as uniform as
possible, we will obtain routes that will cause the traffic to
be highly dispersed throughout the network. In turn, this will
decrease both node congestion and collisions and lead to high
throughput.

The uniform load distribution can be formulated as mini-
mizing the following cost function:

J( ~D) =
∫

A

|( ~D − ~Dav)|2 ds (7)

in which ~Xav is the average value of the vector field~X on
the setA, and it can simply defined as:

~Xav =
1
|A|

∫

A

~X ds. (8)

The quadratic form of the cost function in equation (7) causes
the load to be distributed as uniformly as possible. It prevents
having high loads somewhere in the network while the re-
sources are underutilized somewhere else. One interesting fact
about this cost function is that it is similar to the definition of
energy in electrostatic theory. The above optimization problem
can be summarized as:

Minimize J( ~D) =
∫

A
|( ~D − ~Dav)|2 ds

Subject to:
~∇ · ~D = ρ
Dn(z) = 0 z ∈ Boundary ofA

(9)

The following lemma provides the key to finding the solu-
tion of the optimization problem defined by (9).
Lemma 1:If ~D∗ denotes the optimal solution of equation (9),
then it satisfies:

~∇× ~D∗ = 0 (10)

In the above equation~∇× is the two dimensional curl operator,
and it is defined in the following way for a vector field~F =
[Fx Fy]:

~∇× ~F = (−∂Fx

∂y
+

∂Fy

∂x
)k̂ (11)

in which k̂ is a unit vector perpendicular tôi and ĵ. More
precisely,k̂ = î× ĵ. The proof of Lemma 1 is given in [10].
Based on the result of the this lemma, we can write a set of
partial differential equations for the optimal~D∗:

~∇ · ~D∗ = ρ ~∇× ~D∗ = 0 (12)

The above equations are similar to Maxwell’s equations in
the electrostatic theory. In the theory of partial differential
equations it is proved that the above equations along with
the boundary condition given by (6) give~D∗ uniquely. The
interesting fact is that in the theory of electrostatics, Maxwell’s
equations imply that the stored energy in the space is minimal.
However, our definition of energy is a little bit different from
that in the electrostatic theory.

Mathematically, a vector field for which~∇× ~D = 0 is called
a conservative vector field. It is proved that such a vector filed
can be expressed as the gradient of a scalar field. In other
words:

~D = ~∇U (13)

in whichU is a scalar function known as the potential function.
Then the set of equations defined by (12) reduces to:

∇2U = ρ (14)

in which the operator∇2 is defined as:

∇2 =
∂2

∂x2
+

∂2

∂y2
(15)

The boundary conditions for~D implies that the gradient ofU
is zero on the boundary along the direction that is normal to
the boundary. In other words:

~∇U(z) · n̂(z) = 0 z ∈ Boundary ofA (16)

in which n̂(z) is a unit vector normal to the boundary.
The partial differential equation defined by (14) is known

as the Poisson equation. The potential function found as the
solution of this equation has very nice interpretations for the
many-to-one scenario. Firstly, the potential function gives a
rough idea of how much effort by the network is needed
to send data from a source to the destination. This effort is
proportional to the potential difference of the source and the
destination. Secondly, the potential function gives insight into
the routing. Based on equation (13), the routing is done in
the direction of the gradient of the potential function. Some
concerns like the possibility of forming routing loops are
naturally avoided since the potential function changes strictly
monotonic in the nodes that form a path from the source to
the destination.

B. General Case
Now we turn our attention to the general case in which every
arbitrary pair of nodes can communicate with each other. Our
approach to this problem is to break it into several many-
to-one problems. We consider the case in which there are
several destinations, and all sources want to communicate to
these destinations. Assume there arem such destinations in
the network denoted byΩ = {d1, d2, . . . , dm}.

Now we can formulate the problem of uniform resource
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utilization in the general case. Assume~Di andρi denote the
load density vector field and density of sources for theith

destination respectively. We have:

~∇ · ~Di = ρi (17)

It follows from the original definition of the load den-
sity vector field as being derived from the tangent vectors
of the desired paths for each source-destination pair that
~D =

∑m
i=1

~Di. To fully determine ~D, we need to specify
the optimization problem that it should satisfy. One way
of generalizing the uniform load distribution problem is to
formulate it as the following optimization problem:

Minimize J =
∑m

i=1

∫
A
| ~Di − ~Diav|2 ds

Subject to:
~∇ · ~Di = ρi 1 ≤ i ≤ m
Dni(z) = 0 z ∈ Boundary ofA 1 ≤ i ≤ m

(18)

in which Dni(z) denotes the normal component ofDi on the
boundary ofA, and ~Diav denotes the average of~Di on A as it
is defined by equation (8). The above formulation of the cost
function implies that the problem is decomposed into several
optimization subproblems, and for theith destination we have:

Minimize Ji =
∫

A
| ~Di − ~Diav|

2
ds

Subject to:
~∇ · ~Di = ρi

Dni(z) = 0 z ∈ Boundary ofA

(19)

or equivalently:

~∇ · ~Di = ρi
~∇× ~Di = 0

Dni(z) = 0 for z ∈ Boundary of A
(20)

The form of the cost function in equation (18) does not ensure
an integrated optimization for different destinations since the
value of the load density vector fields for different destinations
are obtained independently. One might make changes in the
form of the cost function to achieve an integrated optimal
solution. One way to do this is to change the cost function in
the following way to achieve an integrated solution:

J =
∫

A

(
m∑

i=1

| ~Di − ~Diav|)2 ds (21)

This cost function is consistent with the definition of the cost in
the case ofm = 1; however, it is not quadratic except form =
1. Unfortunately, it is hard to find simple partial equations
that give the solution of the problem when the cost function
is defined by equation (21), but this optimization problem can
be solved by using numerical methods.

IV. SIMULATION RESULTS

In this section we will show the results of the simulation
for the proposed method of distributing the load in the net-
work. In this simulation scenario nodes of the network are
distributed in a1000m×1000m square. The number of nodes
in the experiment is1500. We have simulated a many-to-one
scenario in which all sources try to send their data toward a
single destination. In this experiment we have assumed the
destination is located in the center of the square. The number
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Fig. 4. The placement of sources and the direction of optimal~D: each×
shows a source, and the line segments show the direction of the optimal~D.
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Fig. 5. The value of the potential functionU

of sources is40 and the sources are randomly distributed in
the network, and they have equal weights.

Figure 4 shows the direction of the~D for the given ar-
rangement of sources. In this figure each× represents a source,
except the× in the center in the coordinate(500m, 500m) that
shows the destination. We have numerically solved the Poisson
equation given by equation (14) with the boundary condition
given by equation (16) on a20× 20 grid to find the potential
function U . Then we have found~D by taking the gradient of
U . The line segments in this figure show the direction of the
optimal load density vector field~D in the network terrain. As
it can be seen in this figure, the optimal~D diverges from the
sources and converges to the destination in the middle. The
other observation about this figure is that the direction of~D
deviates from the line of sight at the places of the network
that are far enough from the destination, and it gets closer to
the line of sight of the destination in the vicinity of it.

In the experiment, we have split the demand of each source
among8 paths that go out from that source in evenly spaced
directions. In other words, the traffic from each source uses
multipath with 8 paths from the source to the destination.
The amount of load assigned to each path is proportional to
the absolute value of the~D on that direction. It should be
emphasized that the splitting is done only at the sources, and
once the traffic of the source is split, it follows the direction of
optimal ~D toward the destination. Figure 6 shows the routes
found by this method. In the figure each3 represents a source.
As can be seen in the figure, eight routes are used for each
source. Figure 5 shows the value of potential functionU found
by numerically solving equation (14) on a20× 20 grid.

To have a basis of comparison we have also calculated
the routes that use the line of sight. In this routing scheme
each source tries to send its data toward the destination by
relaying its data to the node that is within its communication
range and is closest to the destination. Figure 7 shows the

5



0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

x (m)

y 
(m

)

Fig. 6. The routes from the sources to the destination. Each¦ represents a
source; eight routes are assigned to each source.
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Fig. 7. The routes from the sources to the destination. Each¦ represents a
source; in this case routes from each source to each destination are close to
their line of sight.

routes calculated by this method. By comparing this figure
with figure 6, it can be seen that in the case of using optimal~D
the resources of the network are utilized much more uniformly.
To evaluate the difference of using optimal~D to the case in

which we use the line of sight, we have simulated both cases
by using Qualnet [12] simulator. In the simulation experiments
the MAC protocol is802.11, and the maximum transmis-
sion range of each node is about50 meters. Each source
is considered as CBR source sending blocks of256 bytes
in the intervals of125 milliseconds toward the destination.
The simulation results show that the total throughout of the
network in the case of using optimal distribution of load is
about5.6×105 bits/s while this value is3.3×105 bits/s for the
line of sight approach. Thus we have gained about a70 percent
increase by optimal distribution of the load in the network.

We have done several other experiments with the same
conditions as the above experiment but with different randomly
generated locations of the nodes and the traffic sources. The
results are shown in Table I. The second column of this table
shows the throughput achieved by the electrostatic approach
in bits/s, and the third column shows the corresponding values
for the line of sight case. It can be seen that in all cases the
throughput is increased considerably, and the average increase
is 34%.

V. CONCLUSIONS ANDFUTURE WORKS

In this paper we introduced an approach to the routing
problem in wireless ad hoc networks. We assumed that the
routing between a source and destination pair can be done in
a multihop and multipath way. We made the conjecture that a
better performance of the network in terms of throughput can

Exp. Elec. Line of Sight improvement
1 6.5× 105 4.6× 105 39%
2 5.5× 105 3.8× 105 43%
3 5.7× 105 5.0× 105 14%
4 5.4× 105 3.6× 105 51%
5 5.8× 105 4.7× 105 23%

TABLE I

The comparison of the electrostatic approach with the line of sight approach

for different simulation runs

be achieved if we try to distribute the communication load as
uniformly as possible across the network. Under this assump-
tion, in the case that many sources want to send their data to
a single destination, the optimal solution of the problem can
be achieved by solving a set of partial differential equations
similar to Maxwell’s equations in electrostatic theory.

In this work we have assumed that the information about the
location of the nodes and the amount of the demand of sources
is known in a central route server. However, a decentralized
approach can be obtained by using a flooding mechanism in
which the nodes advertise the information of their location and
their demands to to the other nodes in the network. Another
direction for extending our work is taking into account the
possible mobility of the sources. In this case the load vector
field will be time varying, and it might be possible to make
an analogy between the routing problem and the electric field
propagation in the electrodynamics theory.
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