

USING NEURAL NETWORKS TO IDENTIFY
CONTROL AND MANAGEMENT PLANE
POISON MESSAGES

XIAOJIANG DU, MARK A. SHAYMAN, RONALD SKOOG
Department of Electrical and Computer Eng. University of Maryland, Telcordia Technologies

Abstract: Poison message failure propagation is a mechanism that has been responsible
for large scale failures in both telecommunications and IP networks: Some or
all of the network elements have a software or protocol ‘bug’ that is activated
on receipt of a certain network control/management message (the poison
message). This activated ‘bug’ will cause the node to fail with some
probability. If the network control or management is such that this message is
persistently passed among the network nodes, and if the node failure
probability is sufficiently high, large-scale instability can result. Identifying
the responsible message type can permit filters to be configured to block
poison message propagation, thereby preventing instability. Since message
types have distinctive modes of propagation, the node failure pattern can
provide valuable information to help identify the culprit message type.
Through extensive simulations, we show that artificial neural networks are
effective in isolating the responsible message type.

Key words: Poison message, neural network, node failure pattern, fault management

1. INTRODUCTION

There have been a number of incidents where commercial data and
telecommunications networks have collapsed due to their entering an unstable mode
of operation. The events were caused by unintentional triggers activating underlying
system defects (e.g., software ‘bugs,’ design flaws, etc.) that create the propagation
mechanism for instability. These system defects are generally not known to the

 X. Du, M. Shayman, R. Skoog

network providers, and new defects are constantly introduced. More importantly,
these points of vulnerability can be easily triggered through malicious attack.

Our goal is to develop a fault management framework that can protect networks
from unstable behavior when the trigger mechanism and defect causing instability
are unknown. This can be accomplished by identifying generic failure propagation
mechanisms that permit failures to lead to network instability. Once these
mechanisms are identified, control techniques can be designed to prevent or
interrupt the failure propagation. There are several failure propagation mechanisms
that can cause unstable network. Five generic propagation mechanisms have been
identified thus far [4]:
– System failure propagation via routing updates;
– System failure propagation from management / control plane ‘poison message’;
– System failure propagation from data plane ‘invalid message’;
– Congestion propagation from congestion back pressure;
– Deadlocks created from overload and timeouts.

Here we focus on one of these that we call the ‘poison message’ failure
propagation mechanism.

1.1 The Poison Message Failure Propagation Problem

A trigger event causes a particular network control/management message (the
poison message) to be sent to other network elements. Some or all of the network
elements have a software or protocol ‘bug’ that is activated on receipt of the poison
message. This activated ‘bug’ will cause the node to fail with some probability. If
the network control or management is such that this message is persistently passed
among the network nodes, and if the node failure probability is sufficiently high,
large-scale instability can result. Several such incidents have occurred in
telecommunication and other networks, such as an AT&T telephone switching
network incident in 1990 [8]. We are also aware of an incident in which malformed
OSPF packets functioned as poison messages and caused failure of the routers in an
entire routing area for an Internet Service Provider.

In the AT&T incident above, the trigger event is the normal maintenance event
that caused the first switch to take itself out of service. The poison message is the
ordinary message sent to neighboring switches informing them that it is temporarily
going out of service. The poison message creates a state in the neighboring switches
in which faulty code may be executed. In this case, an auxiliary event must occur for
the faulty code to be executed causing the node to fail, namely the arrival of a pair
of closely spaced call setup messages. The dependence on the auxiliary event makes
the node failure probabilistic with the probability depending on network load (the
rate of call setup messages). While in this particular example, the poison message
itself is not flawed, in other examples such as the OSPF case referred to above, the
poison message may be malformed or contain fields with abnormal values.

Using Neural Networks to Identify Control/Management Plane Poison Messages

 Obviously, the more challenging case is the one in which the message itself is
completely normal and is ‘poison’ only because of a software defect in the router or
switch.

There are some discussions about the poison message problem in [8]. One idea
to fight the poison message problem is to limit the number of similar type Network
Elements managed by the central control function and use a distributed architecture.
But the above idea is not practical [8]. It might cause lots of changes to the existing
systems. And it also causes software, hardware inconsistency in the system.

Our philosophy is to add some functions to the existing system rather than
change it. We want to design a fault management framework that can identify the
message type, or at least the protocol, carrying the poison message, and block the
propagation of the poison message until the network is stabilized. We propose using
passive diagnosis and active diagnosis to identify and block the corresponding
protocol or message type.

1.2 The Problem Features

This problem has several differences from traditional network fault management
problems. Typical network fault management deals with localized failure [5] [7].
For instance, when there is something wrong with a switch, what propagates is not
the failure but the consequences of the failure on the data plane (e.g., congestion
builds up at upstream nodes). Then multiple alarms are generated that need to be
correlated to find the root cause [3] [9]. In our problem, the failure itself propagates,
and propagation occurs through messages associated with particular control plane or
management plane protocols. It is also different from worms or viruses in that
worms and viruses propagate at the application layer.

A message type may have a characteristic pattern of propagation. For example,
OSPF uses flooding so a poison message carried by OSPF link state advertisements
is passed to all neighbors. In contrast, RSVP path messages follow shortest paths so
a poison message carried by RSVP is passed to a sequence of routers along such a
path. Consequently, we expect pattern recognition techniques to be useful in helping
to infer the responsible message type.

We make the following three assumptions:
1) There is a central controller and a central observer in the network. I.e., we use

centralized network management.
2) The recent communication history (messages exchanged) of each node in a

communication network can be recorded.
3) Because the probability of two message types carrying poison messages at the

same time is very small, we assume there is only one poison message type when
such failure occurs.

In this problem, we use centralized network management scheme. This is due to
the nature of the problem. The failure itself propagates in the whole network. In

 X. Du, M. Shayman, R. Skoog

order to identify the responsible protocol, event correlation, failure pattern
recognition and other techniques are used. They all need global information,
correlation and coordination. We also suggest some distributed methods to deal with
the poison message problem, such as the Finite State Machine (FSM) method. The
FSM in our framework is a distributed method in the sense that it is applied
separately to information collected at individual failed nodes, rather than across
multiple failed nodes. The details are given in section 2.

There are several ways to record the communication history. Here we assume
we can put a link box at each link of the network. The link box can be used to record
messages exchanged recently in the link. The link box can also be configured to
block certain message types or all messages belonging to a protocol. We refer to the
blocking as message or protocol filtering. Filtering may be used to isolate the
responsible protocol by blocking one or more message types and observing whether
or not failure propagation continues. The filter settings may or may not be chosen to
be the same throughout the network.

We suggest combining both passive diagnosis and active diagnosis to find out
the poison message. Passive diagnosis includes analyzing protocol events at an
individual failed node, correlating protocol events across multiple failed nodes, and
classifying the observed pattern of failure propagation. Active diagnosis uses
protocol or message type filtering.

2. PASSIVE DIAGNOSIS

Passive diagnosis includes the following methods.
1) Finite State Machine Method: This is a distributed method used at a single

failed node. All communication protocols can be modeled as finite state machines [3]
[11]. When a node fails, the neighbor of the failed node will retrieve messages
belonging to the failed node. From the message sequence for each protocol, we can
determine what state a protocol was in immediately prior to failure by checking the
FSM model. We can also find out whether those messages match (are consistent
with) the FSM. If there are one or more mismatches between the messages and the
FSM, that probably means there is something wrong in the protocol.

2) Correlating Messages: Event correlation is an important technique in fault
management. Recently exchanged messages are stored prior to node failure. Then
we analyze the stored messages from multiple failed nodes. If multiple nodes are
failed by the same poison message, there must be some common features in the
stored messages. One can compare the stored messages from those failed nodes. If
for a protocol, there are no common received messages among the failed nodes, then
we can probably rule out this protocol--i.e., this protocol is not responsible for the
poison message. On the other hand, if many failed nodes have the same final
message in one protocol, we can use Bayes’ Rule to calculate the probability of the

Using Neural Networks to Identify Control/Management Plane Poison Messages

final message being the poison one. We have reported the details of this technique in
[1].

3) Using Node Failure Pattern: Different message types have different failure
propagation patterns. One way to exploit the node failure pattern is to use a neural
network classifier. The neural network is trained via simulation. A simulation
testbed can be set up for a communication network. The testbed has the same
topology and protocol configuration as the real network. Then for each message
type used in the network, the poison message failure is simulated. And the
simulation is run for the probability of a node failure taking on different values.
After the neural network is trained, it is applied using the node failure sequence as
input, and a pattern match score is the output. In addition, we can combine the
neural network with the sequential decision problem. The details are discussed in
Section 4.

 The node failure pattern can also be combined with the network management
and configuration information. For example, suppose BGP is the responsible
protocol carrying the poison message. Since only the BGP speaker routers exchange
BGP messages, when we get several failed nodes, we can check if all these nodes
are BGP speakers. If any failed node is not a BGP speaker, then we can rule out
BGP--i.e., BGP is not the poison protocol.

Generate Probability Distribution: The output of passive diagnosis will be a
probability distribution that indicates for each protocol (or message type) an
estimated probability that it is responsible for the poison message.

3. ACTIVE DIAGNOSIS

From passive diagnosis we have an estimated probability distribution over the
possible poison protocols or message types. In active diagnosis, filters are
dynamically configured to block suspect protocols or message types. Message
filtering can be a valuable tool in helping to identify the culprit message type. For
example, if a single message type is blocked and the failure propagation stops, this
provides strong evidence that the blocked message type is the poison message. On
the other hand, if the propagation continues, that message type can be ruled out.

In addition to its use as a diagnostic tool, filtering offers the possibility of
interrupting failure propagation while the culprit message type is being identified.
For example, all suspect message types can be initially blocked stopping failure
propagation. Then message types can be turned on one-by-one until propagation
resumes. While this approach may be attractive in preventing additional node
failures during the diagnostic process, disabling a large number of control or
management messages may result in unacceptable degradation of network
performance. Consequently, the decision making for filter configuration must take
into account tradeoffs involving the time to complete diagnosis, the degradation of

 X. Du, M. Shayman, R. Skoog

network performance due to poison message propagation for each of the suspect
message types, and the cost to network performance of disabling each of those
message types. Each decision on filter configuration leads to further observations,
which may call for changing the configuration of the filters. This suggests that
policies for dynamic filter configuration may be obtained by formulating and
solving a sequential decision problem [6] [12].

The Sequential Decision Problem
• At each stage, the state consists of a probability distribution vector with a

component for each message type potentially carrying the poison message, and
the recent history of the node failures.

• Based on the current state, a decision (action) is made as to how to configure
filters.

• When new node failures are observed, the state is updated based on the current
state, action and new observation.

• Actions are chosen according to a policy that is computed off-line based on
optimizing an objective function taking into account:

– degree to which each action will help in isolating the responsible message type;
– urgency of diagnosis under each potential message type. E.g., if a suspect

protocol sends its messages to a large number of nodes via flooding, the risk of
network instability were it to be poison would be particularly great, and this risk
provides additional impetus for filtering such a message type;

– impact of filtering action on network performance. A critical protocol or
message type should be blocked only if there is a compelling need to do so.
There are three possible outcomes when message filtering is considered.
1) If message filtering is used and the propagation is stopped within a certain

time, then either the poison message type is found (if only one message type is
filtered) or the types that are not filtered are ruled out (two or more types are
filtered).

2) If message filtering is used but the propagation is not stopped within a certain
time, then we did not find the responsible message type this time. The filtered
message types are removed from the possible suspect set. Collect more information,
update the probability vector and reconfigure the filters.

3) If the current action is not to filter any message types, then we simply take
another observation. Several other nodes will fail as the poison message propagates
in the network. This information is used to update the probability vector. Based on
the updated state, a new action is taken to configure the filters.

The sequential decision problem is modeled as a Markov decision process (MDP)
in [2]. Also we proposed a heuristic policy and used a Q-factor approximation
algorithm to obtain an improved policy for the MDP problem in [2].

We have proposed passive diagnosis and active diagnosis to identify the poison
message. In this paper, we focus on one of the methods in passive diagnosis – Using
Node Failure Pattern. We use neural networks to explore the node failure pattern of

Using Neural Networks to Identify Control/Management Plane Poison Messages

different poison messages. Also neural networks can be combined with the
sequential decision problem in active diagnosis. Details are given in section 4.

4. NEURAL NETWORK SIMULATION RESULTS

We have implemented an OPNET testbed to simulate an MPLS network in
which poison messages can be carried by BGP, LDP, or OSPF. The testbed has 14
routers of which 5 are Label Edge Routers and 9 are (non-edge) Label Switching
Routers. The topology of the testbed network is shown below.

Figure 1. The Topology of OPNET Testbed

We use the Neural Network Toolbox in MATLAB to design, implement, and
simulate neural networks. There are several different neural network architectures
supported in MATLAB. We implemented two kinds of them in our simulation.

1) Feedforward backpropagation. Standard backpropagation is a gradient
descent algorithm. This type of neural network is most commonly used for
prediction, pattern recognition, and nonlinear function fitting.

2) Radial basis networks provide an alternative fast method for designing
nonlinear feed-forward networks. Variations include generalized regression and
probabilistic neural networks. Radial basis networks are particularly useful in
classification problems.

Training and Learning Functions are mathematical procedures used to
automatically adjust the network's weights and biases. The training function dictates
a global algorithm that affects all the weights and biases of a given network. The
learning function can be applied to individual weights and biases within a network.
The training function we used is: trainb, which is a batch training with weight and
bias learning rules.

 X. Du, M. Shayman, R. Skoog

4.1 Neural Network Structure and Training

We have implemented three feedforward backpropagation neural networks and
one radial basis neural network. They have similar structure; all of them have three
layers.

1) Input layer with 28 inputs. There are 14 nodes in the communication network.
We use a vector to denote the node status in the communication network:

1 2 14, , ...,
T

k k k kS s s s = , where k is the discrete time step, and m
ks = 0 or 1. (0

means this node is normal, and 1 means this node is failed). The 28 inputs represent
node status vectors at two consecutive time steps: 1,k kS S− .

2) Hidden layer in the middle. In the middle of the three layers is the hidden
layer. There is a transfer function in the hidden layer. A lot of transfer functions are
implemented in MATLAB. In our simulation, we use three kinds of transfer
functions in the feedforward backpropagation neural networks: ‘tansig’, ‘logsig’,
and ‘purelin’.

a. tansig - Hyperbolic tangent sigmoid transfer function.
b. purelin - Linear transfer function.
c. logsig - Log sigmoid transfer function.
3) Output layer with 12 outputs. The output is the probability distribution vector

of the poison message. 12 outputs represent 12 message types in the OPNET
testbed. Each output is the probability of the corresponding message being poison.

From the OPNET simulations, we record the node status vector kS at time k.
Then we use these data to train the neural networks. The input of the neural
networks is a 28-element vector representing 1 &k kS S− . We use 32 sets of such
input to train the neural networks. And the target of training (i.e., the output during
training) is a 12-element vector representing the probability distribution vector of
the poison message. Since we know what is the poison message during simulations,
we know the target vectors. For example, a target vector of the 4th message being
poison is [000100000000]. We set the training goal to be: error < 1010− . And the
training epoch number set to be 50. One epoch means that the training data is used
once. All neural networks meet the training goal.

4.2 Main Test Results

After training neural networks, we use some new data to test the neural
networks. In our simulation we use 17 sets of 28-element vectors to test the four
different neural networks. The result is very good. All of the neural networks can
output a good probability distribution of the poison message for 14 out of 17 input
data. Four sets of outputs are listed in Table 1.

In Table 1, “NN” means Neural Networks. And m1,m2,m3 & m4 represent four
different poison messages. The numbers 1,2,3 and 4 in 1st row represent four
different neural networks. Number 1,2 and 3 represent three feedforward

Using Neural Networks to Identify Control/Management Plane Poison Messages

backpropagation neural networks with transfer function being: ‘tansig’, ‘purelin’ in
1, ‘tansig’, ‘tansig’ in 2, and ‘tansig’, ‘logsig’ in 3. And 4 represents the radial
basis neural network. The outputs of neural networks include both positive and
negative numbers. We call the outputs the ‘distribution scores’. And the final
probability distribution of poison message is an origin shift and normalization from
the distribution scores. I.e., y=a(x+b), where x is the distribution score and y is the
probability distribution, and a & b are parameters. Since during the neural network
training, the output of non-poison message is set to zero, we set the transformation
of the smallest (negative) number in the output vector to be zero. I.e., set b to be –

0x where 0x is the smallest number. And a can be determined from y∑ =1. The
data in Table 1 is the probability distribution after transformation. The training data
for the neural networks in Table 1 only included five different poison messages.
That is why the outputs from neural networks 3 and 4 have several zeros.

Table 1. Output of Neural Networks
NN 1 2 3 4 NN 1 2 3 4

m1

0.0841
0.1235
0.1146
0.0427
 0
 0.0892
0.0898
0.1331
0.1269
0.0446
0.1143
 0.0373

0.1953
0.1273
0
0.0191
0.1035
0.0794
0.0870
0.0780
0.0805
0.0844
0.0743
0.0711

0.9992
 0
 0
0.0006
0.0002
0
0
0
0
0
0
0

0.8212
0.1127
0.0078
0.0322
0.0262
0
0
0
0
0
0
0

m2

0.0140
0.1791
0.1148
0
0.1514
0.0937
0.1149
0.1237
0.1242
0.0022
0.0499
0.0320

0.1302
0.1925
0.0656
0
0.1919
0.0471
0.0793
0.0375
0.0844
0.0519
0.0488
0.0708

0
0.0067
0
0
0.9933
0
0
0
0
0
0
0

0.0796
0.3986
0.1599
0.0032
0.3586
0
0
0
0
0
0
 0

m3

0.0348
0
0.1677
0.0413
0.1128
0.0745
0.0515
0.0984
0.0919
0.1172
0.1782
0.0317

0.1247
0
0.1290
0.1227
0.1281
0.0496
0.0876
0.0373
0.1057
0.0464
0.0646
0.1043

0.0061
0
0.7421
0.0000
0.2518
0
0
0
0
0
0
0

0.0475
0.0298
0.6973
0.0010
0.2244
0
0
0
0
0
0
0

m4

0.0003
0.0132
0.3187
0.0777
0.0388
0.1162
0.1164
0.1452
0.0738
0.0653
0.0345
0

0.0885
0
0.0711
0.1551
0.1549
0.0735
0.0819
0.0731
0.0812
0.0785
0.0676
0.0746

0
0
0
0.9999
0.0001
0
0
0
0
0
0
0

0.0096
0.0032
0.0032
0.9735
0.0105
0
0
0
0
0
0
0

The boldface numbers are the probabilities assigned to the actual poison
messages. And the underlined numbers are instances where the neural networks

 X. Du, M. Shayman, R. Skoog

assign largest probability to wrong message types. Thus, poison messages 1, 3 and 4
are correctly diagnosed by neural networks 2,3,4 but misdiagnosed by 1. Poison
message 2 is correctly diagnosed by neural networks 1,2,4 but misdiagnosed by 3.
From Table1, we can see that most of the time, the four neural networks can provide
a good probability distribution about the poison message--i.e., the neural networks
can identify the poison message. Combining all the test results, we find that the
radial basis neural network performs the best. Also we find that different neural
networks fail for different cases. This suggests that we can combine the outputs
from two (or more) neural networks to get better results.

4.3 Serial Test

In the previous tests, we only use 1 &k kS S− as input--i.e., we only use the node
status at two time steps. Another way to test the neural network is to input a series
of node status, e.g., 1 2 2 3 1, ; , ; ... ,k kS S S S S S− . This means we want to input
more information to the neural network in the hope of getting better results.

In particular we did the serial tests for the data sets that the neural network failed
to correctly diagnose with the original input. The results are encouraging. The
neural network can gradually identify the poison message for about 60%~70% of
these data sets--i.e., the output gradually changed from a bad probability distribution
to good probability distribution. One example of the serial test is given in Table 2.
In the example, the neural network is a feedforward backpropagation neural
network. We also used radial basis neural network for the serial test and have
similar results. In this example, message No. 3 is the poison message. And the data
in Table 2 is the probability distribution after origin shift and normalization.

Table 2. Serial Test Result
Input 1 2,S S 2 3,S S 3 4,S S 4 5,S S 5 6,S S 6 7,S S Ave.

1 0.1296 0.0633 0.1558 0.0339 0.1231 0.0811 0.0865
2 0 0.0056 0.1032 0 0 0.1191 0.0380
3 0.0743 0.1267 0.1101 0.1635 0.1726 0.1461 0.1415
4 0.1231 0.1942 0.0725 0.0403 0.1205 0.0412 0.0986
5 0.1258 0.1217 0.1228 0.1100 0.1221 0 0.1004
6 0.0816 0.0888 0.0937 0.0727 0.0570 0.0860 0.0800
7 0.0975 0.1145 0.0774 0.0502 0.0664 0.0866 0.0821
8 0.0569 0.0185 0.0398 0.0960 0.0499 0.1283 0.0649
9 0.0983 0.0491 0 0.0896 0.0822 0.1224 0.0736

10 0.0642 0.1107 0.1337 0.1143 0.0473 0.0431 0.0855
11 0.0652 0 0.0142 0.0961 0.0684 0.1102 0.0590
12 0.0835 0.1070 0.0769 0.1333 0.0906 0.0359 0.0879
In Table 2, the 1st column is list of the 12 message types. And column 2 through

column 7 are the probability distribution for different inputs. From Table 2, we can

Using Neural Networks to Identify Control/Management Plane Poison Messages

see that at the beginning, the neural network assigns message No. 1 the largest
probability, so it does not find the poison message. When we input 4 5,S S , the
neural network finds the poison message – message No. 3. And the neural network
continues to find the poison message in the later tests. That shows the outputs of the
neural network stabilized after input 4 5,S S . The last column is the average
probabilities of the previous 6 columns. The average probabilities can be thought of
as the combined result from a series of inputs. From Table 2, we can see that the
combined result finds the poison message--i.e., it assigns the largest probability to
the poison message.

4.4 Integration With the Sequential Decision Problem

The neural network can provide a good probability distribution about the poison
message. But it cannot solve the problem completely since the neural network may
assign a large probability to a wrong message type. We still need some actions to
confirm that we find the poison message. One action is to use message filtering --
turn off the possible poison message, and see if the failure propagation stops in a
certain time. If it stops, then the identity of the poison message is confirmed. On the
other hand, if failures continue, then we have new data to input to the neural
network. However, we need a neural network that takes into account the knowledge
that a particular message type is blocked. Thus, it should output a probability
distribution over the remaining message types.

We considered two approaches to combining neural networks with message
filtering. In the first approach, we added another 12 inputs to the neural network.
Each input represents one message type. When a message is turned off, the
corresponding input is set to –1. Also the corresponding output in training is set to –
1. The idea is that we use –1 to denote that this message is turned off. We trained
the new neural network and tested its performance. But it did not work well for the
test data.

In the second approach, we assumed that at most one message is turned off at
any time. Then we created 12 additional neural networks, one corresponding to each
message type that can be turned off. Each neural network has 28 inputs as before,
but only 11 (rather than 12) outputs. If a message is turned off, we remove the
output corresponding to that message. We trained these neural networks and the test
results show that this method works well. One example of the integration with the
sequential decision problem is given in Table 3. In the example, a feedforward
backpropagation neural network is used.

In Table 3, the first four columns correspond to the test with 11-output neural
networks. Each row is the probability of the corresponding message type being
poison. And in the first row, k is the time step in the sequential decision problem.
The poison message in this example is message No. 3. In the example, we use the
policy of filtering the message type with the highest probability at each time step.

 X. Du, M. Shayman, R. Skoog

The bold number corresponds to the message being turned off. At time step 1,
message No. 4 is turned off. Since it is not the poison message, the failure still
propagates. We observe some nodes fail and input that node status to the
corresponding neural network with 11 outputs. We list the outputs in column 3
(k=2). From Table 3 we can see that at time step 2, message No. 5 has the highest
probability and it is turned off. The poison message is not found yet. So we observe
some other node failure, and input the information to the neural network
corresponding to message No. 5 turned off. Then at time step 3, we find the poison
message -- message No. 3.

Table 3. Integration of Neural Networks With the Sequential Decision Problem
Step k = 1 k = 2 k = 3 New k = 1 k = 2 k = 3

1p 0.1086 0.1475 0.1431 Test 0.1086 0.1669 0.1665

2p 0 0 0 0 0.1440 0

3p 0.1280 0.1459 0.1480 0.1280 0.1831 0.1722

4p 0.1650 / 0.1407 0.1650 0 0

5p 0.1633 0.1478 / 0.1633 0.1881 0

6p 0.0386 0.0689 0.0569 0.0386 0.0451 0.0662

7p 0.0541 0.0803 0.1004 0.0541 0 0.1169

8p 0.0906 0.0604 0.0428 0.0906 0.0621 0.0498

9p 0.0553 0.0995 0.1213 0.0553 0.0199 0.1411

10p 0.1194 0.0572 0.0533 0.1194 0.0326 0.0620

11p 0.0671 0.0828 0.0741 0.0671 0.1030 0.0862

12p 0.0099 0.1097 0.1196 0.0099 0.0552 0.1392

Since the identity of the poison message does not change, it follows that if a
message type has been filtered and propagation continues, that message type can be
ruled out as the poison message. Thus, it would make sense to eliminate it as a
possible output from the neural networks applied in subsequent time steps. In the
example, when message type 5 is blocked, it would be desirable to use a neural
network that had the outputs for both types 4 and 5 removed. However, to apply this
approach in general would require training a neural network corresponding to each
subset of the set of message types. The number of neural networks would be
exponential in the number of message types, which is not practical. So we tried
another approach that uses the original neural network with 12 outputs and
computes the conditional probabilities given all message types that have been
previously ruled out. For the message type that has been ruled out, its probability is
set to zero, and the probability distribution is obtained by normalizing the rest of the
outputs. The results of the new tests are listed in the last three columns in Table 3,
and the underline zeros are those set manually. From table 3, we can see that the
new approach works well, and it requires only one neural network.

If different message types have different filtering costs, the policy of blocking
the message type with highest probability can be extended to the well known

Using Neural Networks to Identify Control/Management Plane Poison Messages

heuristic policy based on the ratios E[Cj]/pj. I.e., the message type selected for
blocking is the one that has the smallest ratio E[Cj]/pj where E[Cj] is the expected
cost (in terms of network performance) associated with blocking message type j for
a time step, and pj is the current estimate of the probability that message type j is the
poison one. In our example, we are considering the special case where the costs are
all equal.

5. SUMMARY

We have discussed a particular failure propagation mechanism--poison message
failure propagation, and provided a framework to identify the responsible protocol
or message type. We have proposed passive diagnosis, which includes the FSM
method applied at individual failed nodes, correlating protocol events across
multiple failed nodes and using node failure pattern recognition. If passive diagnosis
cannot solve the problem by itself, it can be augmented by message type filtering,
which is formulated as a sequential decision problem. In this paper, we focus on
identifying node failure pattern using artificial neural networks. We have
implemented and tested four different types of neural networks. Our tests show that
neural networks can provide a good probability distribution for the poison message
in most cases. We also performed the serial test that works for many of the data sets
for which the original test failed. Furthermore, we have combined the neural
networks with the sequential decision problem. In the sequential decision problem,
the decision as to which message type(s) to filter is based on the current state
consisting of the set of failed nodes together with the estimated probability that each
message type is poison. The neural networks appear to be effective as a
computational tool for updating these probabilities without requiring an explicit
model for the transition probabilities in the underlying Markov chain.

ACKNOWLEDGEMENT

This research was partially supported by DARPA under contract N66001-00-C-
8037.

REFERENCES:

[1] X. Du, M.A. Shayman and R. Skoog, “Preventing Network Instability Caused by
Control Plane Poison Messages” IEEE MILCOM 2002, Anaheim, CA, Oct. 2002.

 X. Du, M. Shayman, R. Skoog

[2] X. Du, M.A. Shayman and R. Skoog, “Markov Decision Based Filtering to
Prevent Network Instability from Control Plane Poison Messages” submitted for
publication.
[3] A. Bouloutas, et al, “Fault identification using a finite state machine model with
unreliable partially observed data sequences,” IEEE Tran. Communications, Vol.:
41 Issue: 7, pp: 1074–1083, July 1993.
[4] R. Skoog et al., “Network management and control mechanisms to prevent
maliciously induced network instability,” Network Operations and Management
Symposium, Florence, Italy, April 2002.
[5] H. Li and J. S. Baras, “A framework for supporting intelligent fault and
performance management for communication networks”, Technical Report, CSHCN
TR 2001-13, University of Maryland, 2001.
[6] M.A. Shayman and E. Fernandez-Gaucherand, “Fault management in
communication networks: Test scheduling with a risk-sensitive criterion and
precedence constraints,” Proceedings of the IEEE Conference on Decision and
Control, Sidney, Australia, Dec. 2000.
[7] I. Katzela; M. Schwartz, “Schemes for Fault Identification in Communication
Networks”, Networking, IEEE/ACM Transactions on , Vol.: 3. Issue: 6, pp: 753 –
764, Dec. 1995.
[8] D. J. Houck, K. S. Meier-Hellstern, and R. A. Skoog, “Failure and congestion
propagation through signaling controls”. In Proc. 14th Intl. Teletraffic Congress,
Amsterdam: Elsevier, pp: 367–376, 1994.
[9] A. Bouloutas, S. Calo, and A. Finkel, “Alarm correlation and fault identification
in communication networks”, Communications, IEEE Transactions on, Vol.: 42,
Issue: 2, pp: 523 -533, Feb-Apr 1994.
[10] D.A. Castanon, “Optimal search strategies in dynamic hypothesis testing”,
IEEE Trans. Systems, Man and Cybernetics, Vol.: 25 Issue: 7, July 1995
[11] A. Bouloutas, G.W. Hart and M. Schwartz, “Simple finite-state fault detection
for communication networks,” IEEE Trans. Communications, Vol. 40, Mar. 1992.
[12] J-F. Huard and A.A. Lazar. “Fault isolation based on decision-theoretic
troubleshooting”, Technical Report 442-96-08, Center for Telecommunications
Research, Columbia University, New York, NY, 1996.
[13] R. Sutton and A. Barto. Reinforcement Learning: An Intro.. MIT Press 1998.
[14] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vols. I and II,
Athena Scientific, 2000.
[15] D. Bertsekas and J. Tsitsiklis. Neurodynamic Programming, Athena Scientific,
1996.

