
Measurement Based Optimal Multi-path Routing
Tuna G̈uven, Chris Kommareddy, Richard J. La, Mark A. Shayman, Bobby Bhattacharjee

University of Maryland, College Park, MD 20742, USA
Email: {tguven@eng, kcr@cs, hyongla@eng, shayman@eng, bobby@cs}.umd.edu

Abstract— We propose a new architecture for efficient network
monitoring and measurements in a traditional IP network. This
new architecture enables establishment of multiple paths (tunnels)
between source-destination pairs without having to modify the
underlying routing protocol(s). Based on the proposed architecture
we propose a measurement-based multi-path routing algorithm
derived from simultaneous perturbation stochastic approximation.
The proposed algorithm does not assume that the gradient of
analytical cost function is known to the algorithm, but rather
relies on noisy estimates from measurements. Using the analytical
model presented in the paper we prove the convergence of the
algorithm to the optimal solution. Simulation results are presented
to demonstrate the advantages of the proposed algorithm under a
variety of network scenarios. A comparative study with an existing
optimal routing algorithm, MATE, is also provided.

Keywords— Mathematical programming/optimization, Simula-
tions

I. I NTRODUCTION

Rapid growth of the Internet and the emergence of new
demanding services have sparked interests in the Internet traffic
engineering. As defined in [1], traffic engineering deals with the
issue of performance evaluation and performance optimization
of operational IP networks and encompasses themeasurement,
characterization, modelingandcontrol of the Internet traffic.

Due to the evolution of the Internet from ARPANET, tra-
ditional routing algorithms for IP networks are mostly based
on shortest path routing. However, methods relying on a single
path between a source-destination pair cannot efficiently utilize
network resources and offer limited control capabilities for traf-
fic engineering [1]. Various solutions derived from shortest path
routing algorithms have been suggested, mainly by modifying
link metrics in accordance with the network dynamics (See
[2], [3]). However, these approaches have several shortcomings
that have not been addressed effectively. First, they tend to
have network-wide effect and can result in undesirable and
unanticipated traffic shifts [1]. Second, these schemes cannot
distribute the load among the paths of different cost. Third, they
do not consider the traffic/policy constraints, such as avoiding
certain links for particular source-destination pairs [4].

MultiProtocol Label Switching (MPLS) technology has of-
fered new traffic engineering capabilities that can help over-
come these limitations [5], [6]. Many schemes have been pro-
posed based on MPLS technology [4]. However, these methods
require that the existing IP infrastructure be replaced with
MPLS capable devices, and therefore raises a major investment
question for the Internet Service Providers (ISPs).

In a recent study presented in [7] we have proposed a new
architecture that provides traffic engineering capabilities within

a domain without requiring major changes in the infrastruc-
ture of IP Networks, and addresses some of the limitations
of basic shortest path schemes mentioned earlier. This new
architecture does not need the traditional IP routers to be
replaced or modified. Rather it requires simple devices (such
as PCs or network processors) to be carefully placed inside the
intra-domain network, creating overlay paths between source-
destination (SD) pairs. Furthermore, the architecture allows
gradual deploymentof such devices, resulting in improved
network performance with the addition of each new device. This
provides ISPs with an alternative solution to achieve desired
level of performance at potentially much lower costs. We will
give a brief description of this architecture in Section IV.
However, the details of this architecture are not the subject
of this paper. For more details on the architecture refer to [7].
Here, we will assume that the overlay architecture provides the
following traffic engineering capabilities required for optimal
routing: establishment ofmultiple pathsbetween SD pairs and
efficient distribution of local network state information to the
source nodes.

The focus of this paper is thetraffic mapping (load bal-
ancing) problem; that is the assignment of traffic load onto
pre-established paths to meet certain requirements [1]. In this
paper, we propose an asynchronous distributed optimal routing
algorithm based on stochastic approximation theory, using local
network state information. The model is similar to that in [4],
with the following differences. In [4], although the authors have
mentioned that thecost derivativescannot be computed and
should be estimated by measurements, the mathematical analy-
sis given in the paper does not consider this fact and implicitly
assumes that the analytical gradient function is available to the
algorithm. In addition, the details of the process of estimating
the cost gradient are not given, and the method described in [8]
appears to be a variant of well-knownfinite differencesmethod
([9], [10]). However, this issue is not clearly or explicitly stated
in the aforementioned references. This point is crucial in the
sense that theconvergenceof the optimal routing algorithm
strongly depends on the conditions defining this estimation
process as described in the stochastic approximation literature
(See [10], [11], [12]).

In this study we consider the same problem while relaxing
the assumption that the analytical gradient function is available.
The proposedmeasurement based algorithmis derived from
the idea of simultaneous perturbation stochastic approxima-
tion (SPSA). This allows us to greatly reduce the number
of measurements required for estimating the gradient, while
at the same time we have approximately the same level of

accuracy as the classical finite differences method at each
iteration. By reducing thenumber of measurements, we obtain
a better overall convergence rate due to the fact that each
measurement requires a non-negligible amount of time in a
networking environment. We will discuss these issues in more
detail in the following sections. As presented in Section V,
a simulation based study also demonstrates that the proposed
algorithm outperforms the algorithm proposed in [4].

From a broader point of view, a special case of the proposed
algorithm provides an optimal solution to more general prob-
lems that have asimplex constraint set. (Specifically, we are
referring to the single SD pair scenarios as the special case.)
Although applications of SPSA to the constrained optimization
problems have generated a certain level of interest in the
literature, the simplex constraint set problems have not been
handled properly as we will discuss in the following section.

The rest of the paper is organized as follows. In Section II we
define the optimization problem, and give a brief overview on
stochastic approximation for readers who are not familiar with
the topic. Section III presents the optimal routing algorithm,
and proves its stability and optimality. Section IV discusses the
implementation issues. Section V describes the experimental
setup used to study the performance of the proposed algorithm,
and presents the simulation results. We conclude the paper and
discuss possible topics of future work in Section VI.

II. T HE OPTIMIZATION PROBLEM

A. The Routing Model

In this section, we define the optimization problem of in-
terest, describe the network model used for the analysis, and
list basic assumptions we make. We will closely follow the
formulation in [4] due to the similarity of the problem.

The network is modeled by a setL of unidirectional links.
Let S = {1, 2, · · · , S} denote the set of SD pairs. An SD pair
s has a setPs ⊆ 2L of paths available to it, andNs = |Ps|,
i.e., Ns is the number of paths available for SD pairs. With a
little abuse of notation we letPs = {1, 2, · · · , Ns}, and define
the set of all pathsP = ∪s∈SPs = {1, 2, · · · , N}, whereN =∑

s∈S Ns. While by definition, none of the paths can be used
by more than one SD pair, the paths of two distinct SD pairs
can share a link.

The total input traffic rate of an SD pairs is rs and it routes
xsp amount of traffic on pathp ∈ Ps such that

∑

p∈Ps

xsp = rs, for all s (1)

Let xs = (xsp, p ∈ Ps) be the rate vector of SD pairs, and
let x = (xsp, p ∈ Ps, s ∈ S) be the vector of all rates. Then,
the flow on a linkl ∈ L has a rate that is the sum of source
rates on all paths that traverse linkl:

xl =
∑

s∈S

∑

l∈p, p∈Ps

xsp (2)

For each linkl, Cl(xl) represents the cost as a function of
the link flow xl. We assume that, for alll, Cl(.) is convex and

continuously differentiable. The objective is to minimize the
total costC(x) =

∑
l Cl(xl) by optimally mapping the traffic

on paths inP :

min
x

C(x) = min
x

∑

l

Cl(xl) (3)

s. t.
∑

p∈Ps

xsp = rs, ∀ s ∈ S (4)

xsp ≥ ε, ∀ p ∈ Ps, s ∈ S , (5)

whereε is an arbitrarily small positive constant. For instance,
some of the control packets may be routed along different paths
available between an SD pair.

We can use the well known gradient projection algorithm
to solve this constrained optimization problem, where the
constraint setΘ is defined by (4) and (5). Each iteration of
the algorithm takes the form:

x(k + 1) = ΠΘ

[
x(k)− a(k)∇C(k)

]
(6)

where∇C(k) is the gradient vector whose(s, p)th element
is the first derivative length of pathp ∈ Ps at iteration k
([∇C(k)]sp = ∂C/∂xsp), a(k) > 0 is the step size, andΠΘ[ϑ]
is the projection of a vectorϑ onto the feasible set with respect
to the Euclidean norm.

The above iteration can be carried out in a distributed manner
by each pairs without the need to coordinate with other pairs
in an asynchronous fashion [13], [14]:

xs(k + 1) = ΠΘs

[
xs(k)− as(k)∇Cs(k)

]
(7)

where∇Cs(k) = (∂C/∂xsp(x(k)), p ∈ Ps) is the vector of
first derivative lengths of paths inPs, and ΠΘs denotes a
projection onto the feasible set of SD pairs.

One problem with directly implementing (7) is that
∂C/∂xsp, the first derivative length of a path, may not be
available in practice and can only be estimated empirically
through noisy measurements of the cost function. This is
mainly due to the fact that the link capacities typically fluc-
tuate randomly [4] and the traffic patterns in the Internet are
dynamic in nature. Therefore, it is necessary to use a gradient
approximation method in the optimization problem. Clearly,
stochastic approximation methods are reasonable solutions to
such problems.

B. Stochastic Approximation

Stochastic Approximation (SA) is a recursive procedure
for finding the root(s) of equations in the presence of noisy
measurements, and is particularly useful for finding extrema of
functions [11] (e.g., [15] and [16]).

The general constrained SA has the same form as (6) with
the gradient vector∇C(k) replaced by its approximation̂g(k).
The approximation is typically obtained through measurements
of C(x) aroundx(k). Under appropriate conditions, one can
show thatx(k) converges to the solution of (3) denoted byx∗.

A critical issue in SA is the approximation of gradient
vector. The standard approach motivated from the definition of
gradient is theFinite Differences(FD) method, in which each

component ofx(k) is perturbed one at a time and corresponding
measurementsy(.) are obtained. Typically, thei-th component
of ĝ(k) (i = 1, 2, ...,m) for FD approximation is given by

ĝi(k) =
y(x(k) + c(k)ei)− y(x(k)− c(k)ei)

2c(k)

wherec(k) is some positive number,ei denotes a unit vector
with one in thei-th position and zeros elsewhere, andy(·)
denotes the measured cost function with measurement noise.

An alternative method to estimate the gradient is called the
Simultaneous Perturbation(SP). In this method, all elements
of x(k) are randomly perturbed together to obtain two mea-
surementsy(.). The i-th component of̂g(k) is computed by

ĝi(k) =
y(x(k) + c(k)∆(k))− y(x(k)− c(k)∆(k))

2c(k)∆i(k)

where ∆(k) = (∆1(k),∆2(k), ..., ∆m(k)), the vector of the
random perturbations for SP, needs to satisfy certain conditions
as will be discussed in the following section.

Both of the above approximations have a “two-sided”
form in the sense that they use the measurements
y(x(k) ± perturbation). On the other hand, one-sided gra-
dient approximations involve measurements ofy (x(k)) and
y (x(k) + perturbation). Although it is known that the stan-
dard two-sided form gives more accurate estimates compared to
one-sided forms, for real-time applications one-sided gradient
approximation may be preferred when the underlying system
dynamics change too rapidly to get an accurate gradient esti-
mate with two successive measurements [9]. In this paper we
assume that the one-sided form is utilized for the approximation
process for both methods unless stated otherwise.

SA algorithms using one of the gradient approximations
above are referred to as FDSA or SPSA. One should note that,
in an SPSA algorithm the gradient approximation uses only
two cost-function measurements, independent of the number
of parameters being optimized. Standard (two-sided) finite-
difference approximation requires2m measurements to esti-
mate the gradient. In [11] it is shown that under reasonably
general conditions, SPSA and FDSA achieve the same level
of statistical accuracy for a given number of iterations even
though SPSA usesm times fewer function evaluations than
FDSA. This theoretical result has been confirmed in many
numerical studies, even in cases wherem is on the order of
several hundreds or thousands [9]. This is certainly an important
property especially if the measurements are costly and/or time
consuming. Clearly, this is the case for the optimal routing
problem at hand as measurements require resources and must
be collected and reported in a timely manner. In other words,
SPSA suggests a potential for better statistical accuracy under
the same period of “time” due to a much shorter required
measurement period, even though the two methods have the
same statistical accuracy with the same number of “iterations”.
This result can be promising in the sense that the algorithm
based on SPSA will be able to track and respond to changes
in the network much faster than another algorithm based on

FDSA and improve the overall network performance.
In [11], Spall gives a formal proof of convergence of SPSA

algorithm for the “unconstrained” case. Convergence of SPSA
algorithm under inequality constraints are presented in [17]
as well as [12]. However, these results do not consider the
case wherex(k) ± c(k)∆(k) 6∈ Θ, which may be the case
in the optimal routing problem. Particularly, in [17] Sadegh
suggests to projectx(k) to a point x

′
(k) ∈ Θ such that

x
′
(k) ± c(k)∆(k) ∈ Θ. If x

′
(k) − x(k) → 0 as k → ∞,

convergence can still be established. However, whenΘ is a
simplex, if c(k)

∑
j ∆j(k) 6= 0 then x

′
(k) ± c(k)∆(k) 6∈ Θ

for all x
′
(k). Under these conditions, there is no existing proof

on the convergence of an SPSA algorithm that we can directly
apply to our problem. (In [12], although authors claim that
they have proved the convergence for the case of a network of
queues with similar constraints, they do not consider the issue
mentioned above in the proofs.)

In the next section, we will resolve this technical issue by
a simple method and present a formal proof of the SPSA
algorithm under these constraints.

III. O PTIMAL ROUTING USING SPSA

A. The Optimal Routing Algorithm

In this section we propose an optimal routing algorithm and
prove its stability and optimality. We know from [13] that if
each SD pair runs (7) independently and asynchronously,1 the
overall algorithm converges. Let us now consider the use of
SPSA in place of (7).

At time k, SD pairs updates its rate according to

xs(k + 1) = ΠΘs [xs(k)− as(k)ĝs(k)] (8)

whereĝs(k) is the approximation to the gradient vector∇Cs(k)
given by the SPSA algorithm and is given by

ĝs,i(k) :=
Ns

Ns − 1
ys(x(k) + c(k)∆(k))− ys(x(k))

cs(k)∆s,i(k)
(9)

=
Ns

Ns − 1
(C+(k) + µ+

s (k))− (C−(k)− µ−s (k))
cs(k)∆s,i(k)

,

whereC−(k) = C(x(k)), C+(k) is the cost withx(k) plus
perturbation terms andµ+

s (k) and µ−s (k) are measurement
noise terms. Note that the noise terms observed by each SD
pair is allowed to be different. In addition, whilecs(k) is a
positive scalar as in standard SA, we redefinec(k) as aN ×N
diagonal matrix whosej-th diagonal entry is equal tocsj (sj

being the SD pair associated with thej-th component of∆(k)).
This definition allows the possibility to have differentcs(k)
values for different SD pairs. In addition, we have an extra
multiplicative factor Ns

Ns−1 in (9) compared to the standard
SA. This is due to the projection ofxs(k) + cs(k)∆s(k)
to Θs for all s ∈ S using L2 projection while calculating
ĝs(k). This is explained in the Appendix in details. Finally,
if ΠΘs [xs(k)+cs(k)∆s(k)] = xs(k), the SD pair draws a new
∆s(k) until xs(k) 6= ΠΘs [xs(k) + cs(k)∆s(k)].

1Here asynchronism refers to the fact that the updates by different SD pairs
do not need to take place at the same time.

Note that SD pairs may have different step sizesas(k) for
a given iteration. This brings about a level of asynchronism
between SD pairs in the sense that SD pairs can independently
respond to the dynamics of the network.2 However, we assume
that SD pairs update their rates once every iteration after they
start running the algorithm. This assumption makes sense since
at each iteration SD pairs should make use of the monitoring
information that is already available. This is, however, not to
say that the updates take place simultaneously. The error due
to this asychronism is assumed to be absorbed into the error

termsµ
+−
s (k) in (9).

For the optimality of the new algorithm, we need to show
(8) converges to the same pointx∗s as (7) for all SD pairs. For
this, we use the following result of [18] for the standard SA
algorithm:

Proposition 3.1:Suppose
∑∞

k=1 a(k) = ∞. If

• C(x(k)) is differentiable for eachx(k) ∈ Θ, and either
convex or unimodal,

• b(k) → 0 w. p. 1, and
•

∑∞
k=1 E[ξ(k)T ξ(k)]a2(k) < ∞ w. p. 1;

then x(k) → x∗ with probability 1, whereb(k) and ξ(k) are
defined as

b(k)=E[ĝ(k)|x(k)]−∇C(x(k)) (10)

ξ(k)=ĝ(k)− E[ĝ(k)|x(k)] . (11)
For the convergence of the algorithm we assume that the
following conditions are true:

A1. C (x (k)) is differentiable for eachx(k) ∈ Θ, and either
convex or unimodal.

A2. ∆s,i(k) are (i) mutually independent with zero mean
for all s ∈ S and i ∈ Ps, (ii) uniformly bounded by
some finite constantα, and (iii) independent of (x(l), l =
0, 1, · · · , k). E[(∆s,i(k))−2] are bounded for allk.

A3. E[µ(±)2

s (k)] are bounded and E[µ+
s (k) −

µ−s (k)|∆(k),Fk] = 0 a. s. for all k, where
Fk ≡ {x(0), x(1), · · · , x(k)} or the σ-field generated
by {x(0), · · · , x(k)}.

A4.
∑∞

k=1
a2

s(k)
c2

s(k) < ∞ and
(

cs(k)
cs′ (k)

)2

= O(1) for all s, s′ ∈ S.
A5. There exists a positive constantM such that

1
M

≤ as(k)
as′(k)

≤ M

for all s, s′ ∈ S and for allk.
A6. Let â(k) = maxs∈S as(k). Then, for alls ∈ S

∞∑

k=1

(â(k)− as(k)) < ∞ ,

and

lim
k→∞

as(k)
â(k)

= 1 for all s ∈ S .

2For instance, this formulation covers the case where SD pairs start running
the algorithm at different times.

Proposition 3.2:Under Assumptions A1 - A6, the sequence
x(k) = (xs(k), s ∈ S) generated by the algorithm defined by
(8) converges tox∗ with probability 1, regardless of the initial
vector (xs(0), s ∈ S).

Proof: The proof of the Proposition 3.2 is given in
Appendix.

Note that in our model each SD pair runs the algorithm
independently in a distributed fashion.

B. Measurement process

In this section, we provide the details of the measurement
process and its effect on the overall performance of the pro-
posed algorithm. We will also point out benefits of SPSA based
algorithms over the FDSA alternatives.

As we mentioned earlier, the Simultaneous Perturbation idea
allows us to estimate am × 1 gradient vector by only two
measurements while the Finite Differences method requires
m+1 for one-sided and2m for two-sided measurements. When
we consider the routing problem, this result suggests that an
SD pair can simultaneously perturb all of its paths if an SPSA
based algorithm is employed. However, by definition, an FDSA
based optimal algorithm requires an SD pair to perturb these
paths one at a time.

For the same reason, FDSA based algorithms necessitate that
each SD pair should start doing measurements (i.e., perturb its
paths) at different times. As mentioned in [4], this requires a
special coordination protocol and limits the independence of
actions made by SD pairs. Besides, it creates an additional
traffic load (i.e., overhead) to the network. On the other hand,
once again the theory of SPSA enables simultaneous operation
of SD pairs due to the following reason. Since the perturbations
(cs(k)∆s(k)) made by SD pairs are all zero mean, the effect
of SD pairs to each other can effectively be modeled as a
zero mean noise. In other words, when different SD pairs
that are sharing common links do measurements simultane-
ously, they will create an additional noise term to each other.
However, from Proposition 3.1 and Proposition 3.2, we know
that the convergence of the overall algorithm is valid under
these conditions. Due to this reason, we have the important
flexibility to allow SD pairs to operate in a totally independent
fashion so that each SD pair can freely perturb its paths. As
a consequence, a potential overhead that would be caused by
the coordination protocols is eliminated. Furthermore, we can
significantly reduce the time spent on the measurement process
by simply overlapping these measurements. So, we can achieve
a much faster convergence with respect to an FDSA alternative,
since we effectively reduce the time between iterations by
overlapping measurements while the accuracy of each iteration
remains approximately the same as discussed earlier.

Here we would like to note that even though the simultaneous
operation of SD pairs is beneficial to the convergence process,
on a given sample path that the algorithm follows it may
increase the magnitude of the overall error term observed during
the measurements. In that case, it may actually slow down the
convergence temporarily especially when the sign of one or
more component of the gradient is inverted due to high amount

of noise. However, since the additional noise term due to this
simultaneous operation is zero mean, on the average there is
no effect on the convergence process.

Moreover, one can still improve the performance observed
on a given sample path by making simple modifications to
the base algorithm as we explain below. Let us first give an
example to illustrate how the sign of the gradient can be
inverted by simultaneous operation of SD pairs. Suppose an
SD pair s has a path passing through a bottleneck link3,
which is also shared by some two other SD pairs. Suppose
also that s increases the amount of load it is sending on
this path as a result of a random perturbation made by the
gradient estimation process. At the same time, it is possible
that the other two SD pairs decrease their corresponding path
rates and ultimately the overall effect may be a decrease in
the cost of the bottleneck link. Under these conditions, SD
pair s will possibly observe a decrease in the overall cost
although it increases its rate over the bottleneck link. This
may result in an erroneous decision in the next iteration and
slows the convergence process as a result. However, with simple
modifications using problem specific information that is already
available at the source nodes, the adverse effects of this noise
term can be eliminated. Specifically, by taking the current state
of the paths into consideration, a source node can double check
the decisions made at the current iteration using the information
it already has and avoid taking erroneous actions like the one
given in the example above. Particularly, the existence of the
following conditions are checked by the source nodes at each
iteration:

• An SD pair s tries to increase the load of a path that is
already realizing drops.

• An SD pairs tries to increase/decrease the utilization of a
path, which is already the highest/lowest utilization path.

• An SD pair s tries to increase/decrease the load of a
path, whose utilization level is closer to highest/lowest
utilization path than to the lowest/highest utilization path.

Whenever such a situation is detected4, the algorithm simply
ignores the calculated iterate values and continues to use old
rates (i.e., xs,i(k + 1) = xs,i(k)). As a result, we limit the
possible adverse effects of the simultaneous perturbation where
the sign of an entry in the gradient vector is estimated wrongly.
On the other hand, when the sign of the entries of the estimated
gradient vector does not change, the projection algorithm will
still be working in the negative derivative direction. Conse-
quently, we still get closer to the neighborhood of the optimal
operating point though it may be with a slower rate under
certain cases compared to the noiseless case.

Considering these facts, we can intuitively say that the
performance of the algorithm improves with this modification.
Although a formal treatment of the convergence rate of the

3We assume that a bottleneck link has an arrival rate that tends to be greater
than its departure rate.

4Some of the conditions given above are valid specifically for networks
having links with equal capacities and paths with equal path lengths. However,
similar conditions can easily be defined for more general network settings.

proposed algorithm is required before drawing any definitive
conclusions about the behavior of the algorithm, simulation
results presented in Section V show that the optimal routing
scheme clearly outperforms the algorithm suggested in [4].

Another issue regarding the measurement process is the
effects of asynchronous operation of SD pairs. It is proved in
[4] that, with increasing asynchronism, the convergence process
gets slower. In other words, this result suggests that the larger
the value oft0 gets, the slower will be the convergence, where
t0 is defined to be maximum time lag between the iterate
point (x(t)) and time when the measurements are taken (x(t−
t0)). On the other hand, in the SPSA case as asynchronism
between the SD pairs increases, the magnitude of the error
term in measurements gets smaller since the time that the
measurements overlap with each other gets shorter and this
may cause a marginal performance increase on the overall
system with increased asynchronism. Considering these two
effects of asynchronism, we can say that there exists a trade-off
between the benefits gained by overlapping the measurements
and benefits of having relatively less noisy measurements. As
we will see in Section V, up to a certain level of asynchronism
both effects mainly cancel each other and the performance
of the algorithm does not change. When the asynchronism
increases further, it turns out thatt0 is dominant over the
benefits of less noisy measurements and the convergence starts
to get slower.

When we look to the FDSA case, it is hard to discuss
asynchronism since we need a certain level of coordination
between SD pairs so that each SD pair does measurements
(i.e., perturb its paths) at different times. However, the time
lag between the iterate point (x(t)) and time when the earliest
measurement is taken (x(t−t0)) can be assumed as a source of
asynchronism according to the definition oft0 given in [4]. This
is because a larget0 can force source nodes to use outdated
measurement information considering the dynamic nature of
networks. Consequently, this means the convergence should be
slower in the FDSA case when compared to SPSA not only
because the time between iterate points is longer than SPSA, but
also it forces the system to use more outdated information. (A
critical issue is that there is no formal guarantee of convergence
when the measurements made in FDSA overlap in time and
therefore it is not possible to minimize the size oft0 by partially
overlapping measurements in time.)

C. Cost Function

The requirements on the cost function are stated in Proposi-
tion 3.1. Selecting the link cost function in the following form
is sufficient to satisfy these conditions:

Cl(t) = dl(t) + ul(t)2 (12)

where,dl(t) is the number of packets dropped on linkl during
the (t, t+1) period andul(t) is the link utilization level at the
same time period.

The arrival process at a source node is an aggregate process
of many individual flows. We assume that each individual flow
generates packets according to an equilibrium renewal process,

i.e., interarrival times of packets from a flow have a fixed dis-
tribution, and these equilibrium renewal processes are mutually
independent. Then, by the Palm-Khintchine theorem [19], the
superposition of these independent renewal processes can be
approximated by a Poisson process, where interarrival times of
packets are exponentially distributed.

In addition, according to the work presented in [20], there
exists two peaks at 500 and 1500 bytes in the packet size
distribution of Internet traffic. Using this result, we can roughly
model the packet size distribution as a Bernoulli random
variable with values at 500 and 1500 bytes.

Under the conditions above, we can approximate the links in
the network asM/G/1/K queues. Following this assumption
we can justify the assumption on convexity of the cost function
as follows. One can check that in the regime of interest (e.g.,
with utilization level being less than 150 percent), the link cost
function is convex in the case ofM/M/1/K queue. In the
case ofM/G/1/K queue one can show that the approximation
functions for blocking probability of anM/G/1/K queue,
(e.g.,Gelenbe’s formula [21] and two-moment approximation in
[22]), are indeed convex in the regime of interest under various
parameter settings.

IV. I MPLEMENTATION ISSUES

In this section, we present a new overlay architecture to
provide traffic engineering capabilities. Here, we will give a
brief overview of the architecture. The details of the overlay
architecture can be found in [7].

A. Path Establishment

Alternative paths between SD pairs are created using over-
lay nodes. The overlay nodes are located at all the source-
destination nodes as well as at some core nodes. The idea
is similar to the ones presented in [23] and [24], with the
difference that the overlaying is done intra-domain as opposed
to inter-domain. When a packet is sent along the shortest path,
it will be forwarded in the same way as the traditional IP
networks. On the other hand, if the packet is to be sent through
an alternative path, it will be processed at the source overlay
node and an additional IP header will be attached to the packet.
This way the packet can be forwarded to a carefully placed
overlay node that is lying along the particular alternative path.
As soon as this overlay node gets the packet, it removes the
outer IP header and forwards the packet to the final destination
(or possibly to another overlay node). By this methodology, one
can utilize as many alternative paths as needed. Note that using
this architecture, we can still employ the simple shortest path
routing inside the network. This allows us to use the existing
traditional routers without any modification. The overlaying
capabilities can be realized by attaching a simple device (e.g.,a
PC or a network processor) to the existing routers. This device
simply processes the packets, adds or removes IP headers
before the basic forwarding operation is made at the routers.

As a final remark, we would like to emphasize the point that
the proposed optimal routing algorithm does not necessitate
the use of the overlaying architecture. For instance, it can also

L1

 L2

L3

 D1

 D2

 D3

 S2

 S1

 S3

Fig. 1. Network Topology 1

be employed in an MPLS based network, where the overlay
paths are replaced with LSPs (Label Switched Paths). The
use of overlaying architecture actually gives us the additional
opportunity to use the proposed algorithm in the traditional IP-
based networks.

B. Traffic Monitoring

Traffic monitoring is also handled by the overlay architecture.
Each link in the network is mapped to the closest overlay node
with a certain tie-breaking rule that gives a unique mapping
[7]. Overlay nodes periodically poll the links that they are
responsible for, process the data and forward necessary local
state information to the SD pairs utilizing the corresponding
links in a coordinated way. (Note that this way the links are
not required to be probed by each SD pair.) While sending the
information to a source node of a specific SD pair, the overlay
nodes also aggregate the information gathered from different
links as much as possible. For instance, the cost information
obtained from the links that are on a particular path of an SD
pair s are aggregated by the overlay nodes, using the fact that
the cost structure is additive according to the definition given in
(3). As a consequence, the overhead caused by the distribution
of the link state information is minimized.

C. Traffic Filtering

For QoS purposes, special care should be given while split-
ting the traffic at the source nodes. Specifically, one should
avoid the well-known reordering problems especially for the
TCP traffic. The optimal routing algorithm proposed in this
paper does not require and specify how a particular packet
should be routed along the network. Instead, it calculates
the rates at which the traffic should be distributed along the
alternative paths between SD pairs. Therefore, any existing
filtering scheme that minimizes the reordering problem can be
used for this purpose. A possible solution is presented in [4]
that depends on the use of hash-functions.

V. EXPERIMENTAL SETUP AND SIMULATION RESULTS

The purpose of this section is to identify the characteristics
of the proposed routing algorithm and evaluate its performance
under various networking conditions. Using simulations, we
would like to verify that the algorithm is stable and robust in
such a way that it minimizes congestion and quickly balances
the load among multiple-paths between SD pairs in a reasonable
period of time.

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

Time(sec)

O
ffe

re
d

Lo
ad

Aggregate Traffic on Link 1
Aggregate Traffic on Link 2
Aggregate Traffic on Link 3

Fig. 2. Network topology 1 with an offset of 50 ms

0 500 1000 1500 2000 2500 3000 3500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time(sec)

Lo
ss

 R
at

e

Loss Rate on Link 1
Loss Rate on Link 2
Loss Rate on Link 3

Fig. 3. Network topology 1 with an offset of 50 ms

In all simulations, the period of link state measurements is
selected as one second. As a consequence, SD pairs can update
their rates at best approximately every two seconds since we
require two measurements for estimating the gradient vector
according to the SPSA.

Experiments are simulated under two network topologies.
The first topology, which is borrowed from [4] is given in
Figure 1. This topology allows us to obtain insights about
the fundamental behavior of the proposed algorithm due its
simplicity. In addition, it serves us as a base setup so that we
can make a comparison with the MATE algorithm presented
in [4]. We have three SD pairs (S1-D1, S2-D2 and S3-D3)
and each pair has two distinct paths. Note that this creates a
considerable amount of interaction between these SD pairs.

The network consists of identical links with a bandwidth of
45 Mbps. Packet size is given as 257 bytes. Each pair initially
uses only the default shortest (minimum hop distance) path.
Since all paths have equal length, the default min-hop paths

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

Time(sec)

O
ffe

re
d

Lo
ad

Aggregate Traffic on Link 1
Aggregate Traffic on Link 2
Aggregate Traffic on Link 3

Fig. 4. Network topology 1 with an offset of 200 ms

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

Time(sec)

O
ffe

re
d

Lo
ad

Aggregate Traffic on Link 1
Aggregate Traffic on Link 2
Aggregate Traffic on Link 3

Fig. 5. Network topology 1 with an offset of 500 ms

are selected such that L2 is along the default shortest path
of S1-D1, while the default shortest paths of S2-D2 and S3-
D3 both traverse L3. Each SD pair generates a 19.8 Mbps
(corresponding to 0.44 link utilization) Poisson traffic on the
average. In addition, L1, L2 and L3 carry uncontrolled cross
traffic. The cross traffic dynamics is given in Table I. This setup
is effectively the same as the one given in [4]. (See [25] for the
details of this setup.) A random delay is introduced before each
SD pair starts running the optimal routing algorithm to guaran-
tee that the SD pairs are not synchronized. (The maximum value
of this random delay is defined as offset.) As shown in Figures
2 and 3, the algorithm quickly eliminates the congestion and
successfully balances the traffic in a short time. Moreover, these
results show that the proposed algorithm clearly outperforms
the MATE algorithm. While MATE requires around 400-5005

5Since simulation code and packet size distributions for the MATE algorithm
is proprietary, it was not possible to simulate MATE. Therefore, we base our
comparison on the results presented in [4].

TABLE I

THE CROSS TRAFFIC DYNAMICS

Load Distribution in time (sec)
Link

[0− 1000) [1000− 2500) [2500− 3600)

L1 0.77 0.44 0.44
L2 0.33 0.33 0.67
L3 0.33 0.33 0.33

seconds to converge, it takes around 200 seconds6 in the case
of the proposed algorithm. Besides, the proposed algorithm
quickly (around 50 seconds) clears out the packet drops unlike
MATE. (See Figures 10 and 11 presented in [4].)

Figures 4 and 5 illustrates the effect of increased asynchro-
nism between SD pairs. We increase the asynchronism between
SD pairs by simply increasing the offset value. From both
graphs we can conclude that the algorithm is still able to
converge in a short time. As we see from Figures 2 and 4, the
performance is almost the same for offset values 50 ms and
200 ms. However, when we increase the offset to 500 ms, we
see that the convergence of the proposed algorithm gets slightly
slower. Thus, these results validate the earlier discussion made
in Section III-B.

Figure 6 represents the second topology we consider in this
paper. This topology is also used in [26], [27] and considered
to be typical of a large ISP’s network. (This topology closely
resembles the MCI Internet topology [28].) Using this topology,
we intend to analyze the performance of the proposed algorithm
under more realistic networking conditions.

Nodes 1, 5, 6, 14 and 18 are both source and destination
nodes. This gives us a total of 20 SD pairs. Each pair has at
least two paths to reach to destination. A total of 78 paths
are created between these 20 SD pairs using overlaying archi-
tecture. Overlay capability is available at all source/destination
nodes as well as the nodes 2, 10 and 13. In this experiment,
the offset is set to 0.1 sec. The dashed links have a capacity
of 50 Mbps, while solid links have 20 Mbps. The packet size
for this scenario is selected as 500 bytes. All SD pairs initially
use only the shortest paths. Each SD pair generates traffic with
a rate of 11.5 Mbps. In addition, the cross traffic traverses the
network on link (3-12) starting at simulation time 1600 sec.
The cross traffic rate is 18 Mbps and cannot be shifted to any
alternative paths as before.

In Figure 7, we illustrate how the load is distributed after the
algorithm starts. The links that we have plotted are selected in
such a way that each of them is located on a different alternative
path that can divert the traffic sent through link (3-12). The
only exception is link (12-16), which demonstrates how the
traffic load is migrated away from the paths that were traversing
link (3-12). In addition, Figure 8 shows the total number of

6This performance result is verified under several sample paths created by
different random seeds.

 2

 1 3

 4

 5

 7

 6

 8

 9

10

11

12

14

16

18

17

15
13

Fig. 6. Network Topology 2

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

Time(sec)

O
ff
e

re
d

 L
o

a
d

Aggregate Offered Load Levels on Selected Links

3−12
3−8
2−4
2−9
5−7
12−16

Fig. 7. Offered Load on Network Topology 2

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time(sec)

Pa
ck

et
 d

ro
ps

 p
er

 s
ec

on
d

Fig. 8. Total packet drops on Network Topology 2

packets dropped in the entire network. We observe from both
figures that the algorithm can rapidly eliminate congestion and
distribute the load among the multiple paths between the SD
pairs. This result is encouraging in the sense that the proposed
algorithm converges in reasonable time scales even under the
cases where many SD pairs have independent and asynchronous
operation.

VI. CONCLUSION

In this paper, we have focused on the optimal multi-path
routing problem where the link cost derivatives can only be
estimated but cannot be calculated analytically. We mathemat-
ically proved the optimality and stability of the proposed algo-
rithm. We have applied the technique of SPSA, which offers
significant benefits over traditional finite-difference methods.
This way we obtained much shorter measurement times while
estimating the gradient and as a result achieved a faster conver-
gence. Simulation results show that the proposed algorithm can
swiftly and effectively minimize the congestion and distribute
traffic load efficiently under dynamic network conditions. Fi-
nally, we have presented a new architecture to effectively apply
traffic engineering in IP Networks. A possible future work is
the integration of the proposed algorithm with the Differentiated
Services environment where there exist several traffic classes
with different Quality of Service (QoS) requirements.

ACKNOWLEDGMENTS

We would like to thank Professor Michael C. Fu for his
valuable comments.

REFERENCES

[1] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview
and principles of internet traffic engineering,” RFC 3272, May 2002.

[2] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSPF
weights,” inProceedings of the Conference on Computer Communications
(IEEE Infocom), Tel-Aviv, Israel, Mar. 2000.

[3] M. A. Rodrigues and K. G. Ramakrishnan, “Optimal routing in shortest-
path networks,” inITS’94, Rio de Janeiro, Brazil.

[4] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive
traffic engineering,” inProceedings of the Conference on Computer
Communications (IEEE Infocom), Anchorage, Alaska, Apr. 2001.

[5] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. MacManus,
“Requirements for traffic engineering over MPLS,” RFC 2702, Sept.
1999.

[6] E. Rosen, A. Vishwanathan, and R. Callon, “Multiprotocol label switching
architecture,” RFC 3031, Jan. 2001.

[7] C. Kommareddy, T. G̈uven, B. Bhattacharjee, R. J. La, and M. A.
Shayman. Overlay routing for path multiplicity. Tech. Rep. UMIACS-TR#
2003-70. [Online]. Available: http://www.cs.umd.edu/Library/TRs/CS-
TR-4500/CS-TR-4501.pdf

[8] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive traffic
engineering,”Computer Networks-The International Journal of Computer
and Telecommunications Networking, vol. 40, no. 6, pp. 695–709, Dec.
2002.

[9] J. C. Spall, “Stochastic optimization, stochastic approximation and simu-
lated annealing,”Encyclopedia of Electrical and Electronics Engineering
(J. G. Webster, ed.), Wiley, New York, vol. 20, pp. 529–542, 1999.

[10] ——, “Stochastic optimization and the simultaneous perturbation
method,” inProceedings of the Winter Simulation Conference, 1999.

[11] ——, “Multivariate stochastic approximation using a simultaneous per-
turbation gradient approximation,”IEEE Trans. Automat. Contr., vol. 37,
pp. 332–341, 1992.

[12] M. Fu and S. D. Hill, “Optimization of discrete event systems via
simultaneous perturbation stochastic approximation,”Transactions of the
Institute of Industrial Engineers, vol. 29, no. 3, pp. 223–243, 1997.

[13] J. N. Tsitsiklis and D. P. Bertsekas, “Distributed asynchronous optimal
routing in data networks,”IEEE Trans. Automat. Contr., vol. AC-31, no. 4,
pp. 325–332, Apr. 1986.

[14] D. Bertsekas and R. Gallager,Data Networks. Prentice-Hall Inc., 2nd
edition, 1992.

[15] J. Kiefer and J. Wolfowitz, “Stochastic estimation of a regression func-
tion,” Ann. Math. Stat., vol. 23, pp. 462–466, 1952.

[16] J. R. Blum, “Multidimensional stochastic approximation methods,”Ann.
Math. Stat., vol. 25, pp. 737–744, 1954.

[17] P. Sadegh, “Constraint optimization via stochastic approximation with a
simultaneous perturbation gradient approximation,”Automatica, vol. 33,
no. 5, pp. 889–892, 1997.

[18] P. L’Ecuyer and P. W. Glynn, “Stochastic optimization by simulation:
convergence proofs of the GI/G/1 queue in steady-state,”Management
Science, vol. 40, no. 11, pp. 1562–1578, 1994.

[19] D. P. Heyman and M. J. Sobel,Stochastic Models in Operations Research.
McGraw-Hill, 1982.

[20] K. Claffy, G. Miller, and K. Thompson, “The nature of the beast: Recent
traffic measurements from an internet backbone,” inINET 1998.

[21] E. Gelenbe, “On approximate computer system models,”JSAM, vol. 22,
no. 2, pp. 261–269, 1975.

[22] J. Smith and F. Cruz. The buffer allocation problem for general
finite buffer queueing networks. Unpublished. [Online]. Available:
http://www.ecs.umass.edu/mie/faculty/smith/

[23] A. Collins, “The detour framework for packet rerouting,” Ph.D.
dissertation, Univ. of Washington, 1998. [Online]. Available:
http://www.cs.washington.edu/homes/acollins/quals/quals.ps

[24] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” inProc. 18th ACM Symp. on Operating Systems
Principles (SOSP), Banff, Canada, 2001.

[25] K. Sinha and S. Patek. Opiate: Optimization integrated
adaptive traffic engineering. Tech. Rep. [Online]. Available:
http://www.sys.virginia.edu/techreps/2002/sie-020001.pdf

[26] S. Nelakuditi and Z. L. Zhang, “A localized adaptive proportioning
approach to QoS routing,”IEEE Commun. Mag., vol. 40, no. 6, pp. 66–71,
2002.

[27] G. Apostolopoulos, R. Guerin, S. Kamat, and S. Tripathi, “Quality of
service based routing: A performance perspective,” inACM SIGCOMM,
1998.

[28] Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth
guarantees,” inIEEE International Conference on Network Protocols,
1997.

[29] T. Güven, C. Kommareddy, R. J. La, M. A. Shayman,
and B. Bhattacharjee. Measurement based optimal multi-
routing. Tech. Rep. UMIACS-TR# 2003-69. [Online]. Available:
http://www.cs.umd.edu/Library/TRs/CS-TR-4500/CS-TR-4500.ps

[30] H. Kushner and D. Clark,Stochastic Approximation Methods for Con-
strained and Unconstrained Systems. Springer-Verlag, 1978.

APPENDIX

In this section we provide a sketch of the proof of Proposi-
tion 3.2. The complete proof of this can be found in [29].

Proposition 3.1 (i.e. Proposition 1 of [18]) relies on Theorem
5.3.1 of [30]. We will prove Proposition 3.2 by adapting the
same theorem. First, note that given anyNs × 1 vectorϑ, the
solution of the minimization problem

min
φ

||ϑ− φ||2 (13)

s. t. φT u = rs

is given by

φi = ϑi +
rs −

∑Ns

j=1 ϑj

Ns
, (14)

whereu = [1, 1, · · · , 1]T . Obviously, if φi ≥ 0 for all i, this
solution is equivalent to theL2 projection. Here for the purpose
of temporary perturbation we replace (5) with a non-negativity
constraint. Thus, the projection ofxs(k) + cs(k)∆s(k) can be
calculated using (14) if

xs,i(k) + cs(k)

(
∆s,i(k)−

∑Ns

j=1(∆s,j(k))
Ns

)
≥ 0 . (15)

Recall that∆s,i(k) is bounded byα from Assumption A2.
Hence, (15) holds if

cs(k) ≤ minj{xs,j(k)}
2α

. (16)

From (5) we knowminj{xs,j(k)}
2α ≥ ε

2α . Since,cs(k) → 0,
there exists finiteK1 such thatcs(k) ≤ ε

2α for all k > K1.
Therefore, (14) can be used to compute the projection of
xs(k) + cs(k)∆s(k) for sufficiently largek > K1.

Let us first define the notation to be used in the proof.
Let ∆̄s(k) be an N × 1 vector, where values of entries
corresponding to those of SD pairs are ∆s,i(k) and zero
otherwise. Hence,

∑
s∈S ∆̄s(k) = (∆s,i, s ∈ S, i ∈ Ps).

Similarly, us is an N × 1 vector, where the values of entries
corresponding to those of SD pairs are one and zero otherwise.
Following the proof in [12] and using Taylor’s theorem, for
k > K1 ands ∈ S we have

E [ĝs,i(k)|x(k)]

=
Ns

Ns − 1
E

[
C+(k)− C−(k) + µ+

s (k)− µ−s (k)
cs(k)∆s,i(k)

∣∣∣∣x(k)
]

=
Ns

Ns − 1
E

[
E [C+(k)− C−(k)|∆(k)]

cs(k)∆s,i(k)

∣∣∣∣x(k)
]

=
Ns

Ns − 1

(
E

[
∇CT (x(k))

∑
s′∈S cs′(k)∆̄s′(k)

cs(k)∆s,i(k)

∣∣∣∣x(k)

]

−E

∇CT (x(k))

∑
s′∈S

cs′ (k)
∑N

s′
j=1 ∆s,j(k)

Ns′
us′

cs(k)∆s,i(k)

∣∣∣∣x(k)

+E

[∑

s′∈S

O
(
c2
s′(k)∆2

s′(k)
)

cs(k)∆s,i(k)

])

=
Ns

Ns − 1

(
Ns − 1

Ns
∇Cs,i(x(k)) + O(cs(k))

)

=∇Cs,i(x(k)) + O(cs(k))

whereC−(k) = C (x(k)),

C+(k) = C

(
x(k) +

∑

s′∈S

cs′(k)∆̃s′(k)

)
,

and

∆̃s′(k) = ∆̄s′(k)−
∑Ns′

j=1 ∆s′,j(k)
Ns′

us′ .

Therefore, one can see thatb(k) → 0 with probability one.
From the assumption thatE[µ+

s (k) − µ−s (k)|Fk] = 0 and

using the independence ofµ±s (k) and ∆s(k), we can bound
the second moment of̂gs(k) as follows:

E[(ĝs,i(k))2] (17)

=E

[(
C+(k)− C−(k) + µ+

s (k)− µ−s (k)
cs(k)∆s,i(k)

)2
]

=E

[(
C+(k)− C−(k)

cs(k)∆s,i(k)

)2

+
(

µ+
s (k)− µ−s (k)
cs(k)∆s,i(k)

)2
]

Following a similar argument used above one can show
that the first term in (17) isO(1) and the second term is
O(cs(k)−2), using the bounds onE[(∆s(k))2], E[(∆s(k))−2],
andE[(µ±s (k))2].

Now as shown in [29], the convergence of the algorithm can
be proved by adapting the proof of Theorem 5.3.1 of [30] under
the assumptions A1-A6.

