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Abstract—1In a network with a high density of wireless nodes,
we model flow of information by a continuous vector field known
as the information flow vector field. We use a mathematical model
that translates a communication network composed of a large
but finite number of sensors into a continuum of nodes on which
information flow is formulated by a vector field. The magnitude of
this vector field is the intensity of the communication activity, and
its orientation is the direction in which the traffic is forwarded.
The information flow vector field satisfies a set of Neumann
boundary conditions and a partial differential equation (PDE)
involving the divergence of information, but the divergence
constraint and Neumann boundary conditions do not specify the
information flow vector field uniquely, and leave us freedom to
optimize certain measures within their feasible set. Therefore,
we introduce a p-norm flow optimization problem in which we
minimize the p-norm of information flow vector field over the area
of the network. This problem is a convex optimization problem,
and we use sequential quadratic programming (SQP) to solve it.
SQP is known for numerical stability and fast convergence to
the optimal solution in convex optimization problems. By using
standard SQP on p-norm flow optimization, we prove that the
solution of each iteration of SQP is uniquely specified by an
elliptic PDE with generalized Neumann boundary conditions.
The p-norm flow optimization shows interesting properties for
different values of p. For example, if p is close to one, the
information routes resemble the geometric shortest paths of the
sources and sinks, and for p = 2, the information flow shows
an analogy to electrostatics. For infinitely large values of p, the
problem minimizes the maximum magnitude of the information
vector field over the network, and hence it achieves maximum
load balancing.

I. INTRODUCTION

Wireless sensor networks have been a subject of interest of
many researchers in recent years. Fast growth of microelec-
tronics and microprocessing devices have resulted in devices
with very small physical dimensions and a small per sensor
cost. The small cost of the devices enables networks with
several hundred to several thousand sensors distributed in
a geographical area. There are many applications for such
networks including military, environment monitoring, trans-
portation systems, surveillance, agriculture and home appli-
cations. Generally, sensors use radio frequency channels for
communicating, and it is desired to collect the data acquired
by all sensors in one or a few specific destinations in the
network for processing. Such stations are known as sinks or
fusion centers. For communicating with the traffic sinks, the
sensors relay the packets of each other in a multi-hop way.
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As the number of wireless nodes grow, careful analysis of
the network behavior becomes very hard by using conventional
methods that employ a discrete model in space. In discrete
models, different network properties such as transport rate of
information are only evaluated at the locations of the wireless
nodes. A main shortcoming of discrete models is that often
the flow models become computationally prohibitive when the
number of wireless nodes grows very large.

We use a continuous space model to formulate flow of
information in a wireless network with a large number of
nodes. For this purpose, we use a vector field model that
represents flow of information at every point of a network. We
introduced this idea in our former work [1,2], with a model
inspired by electrostatics and using analogy of propagation
of an electric field in a dielectric media with information
transport in a network. In those works we used a quadratic cost
function, and showed that solution to the optimization problem
is found by solving a set of PDEs analogous to Maxwell’s
equations in electrostatics. Our work was followed by Toumpis
and Tassiulas [3,4], where the authors showed that minimizing
the quadratic cost function results in optimal deployment of
sensors by minimizing the number of sensor nodes required
to transport all the information to the intended sinks. In a
recent work [5], we have given an optimization for the case
that there are multiple commodity flows in the network, and
we need to make a joint optimization on multiple flows. In
this methodology an information flow vector field models
transportation of traffic in a wireless network. The vector
field has two components at every location of the network:
a magnitude that represents the density of communication at
that location and an orientation that gives the direction to
which the traffic is forwarded. The model is most suitable
in situations where the sensors in the network are distributed
with a high enough density so that the routes from individual
sensors to the traffic sinks can be chosen to well approximate
the flux lines of the vector field passing through the sensors.
The first property of the vector field is that it satisfies a partial
differential equation (PDE), which impose the constraint that
the traffic of all sources should be routed to their destinations.
This constraint is incorporated into our model through the di-
vergence of the vector field and represents flow conservation in
conventional networks. Additionally, the vector field satisfies
a set of Neumann boundary conditions, which state that the
vector field has a zero component in the direction normal to
the boundary of the network.



We present a general method for flow optimization in a
wireless sensor network. In this method, we minimize a p-
norm of the information flow vector field subject to the
basic flow constraints (i.e., flow conservation and boundary
constraints). We have called this problem the p-norm flow
optimization. In this problem we always have p > 1. The p-
norm optimization problem has several interesting properties
for different values of p. For example, when p is close to
1, the routes tend to pass through shortest geometric paths
from a source to a sink, and as a result the average transport
delay is less compared to the case with higher values of p.
When p is close to 1, the optimization does not make the best
use of network resources, and for example, it may leave a
lot of resources unused while some areas of the network that
lie on shortest paths are overloaded by the network traffic.
By increasing the value of p from 1 the optimization tries to
spread the traffic in the network and use the resources more
evenly. While this increases delay, it helps load balance the
traffic compared to the case where p is smaller. The limiting
case of p — oo is a minmax problem, where the maximum
magnitude of the information flow vector field is minimized.
Load balancing can be beneficial in numerous ways such
as increasing the transport capacity of the network by using
standard techniques such as spatial multiplexing and uniform
use of network resources such as the nodes’ batteries. While
the case p — oo achieves maximal load balancing, it may
use longer paths for some portions of the traffic. In practical
applications, p can be selected based on a trade-off between
delay and balancing the traffic over the network.

In order to solve the p-norm flow optimization, we first show
that this problem is a convex optimization problem. Then, we
use Sequential Quadratic Programming (SQP) to solve the p-
norm flow optimization on a general network geometry. SQP
uses iterations, and in each iteration, it finds the quadratic ap-
proximation of the optimization problem around an operating
point and solves the resulting quadratic optimization problem.
Then it adds the solution to the operating point and finds a
new operating point and repeats iterations. SQP is known for
numerical stability and fast convergence to the optimal solution
in convex optimization problems. We prove that the solution to
each iteration of SQP is uniquely specified by an elliptic PDE
with generalized Neumann boundary conditions. This elliptic
PDE has a standard canonical form.

There are several lines of works that have studied dense
wireless sensor networks. Non-quadratic cost functions in the
flow problem were considered in [4], where the authors con-
sidered a general form of cost function, and optimizing the cost
function requires solving nonlinear PDEs. Such PDEs are hard
to solve for a generic cost function. Additionally, properties
of the solutions for general cost functions are unknown. In
comparison to the cost functions in [4], the p-norm flow
optimization is a less general form of the cost function, but
we present a concrete method to solve the resulting PDEs and
give an in depth insight into the properties of the solution
for different values of p. Load balancing problem in dense
wireless sensor networks was studied in [6]. In this work,

the authors consider a minmax optimization problem and
develop lower bounds for the objective of the achievable
minimum. In [7], the performance of load balancing methods
in the presence of multipath routes were compared with single
path approaches, and it was shown that under certain models,
the performance of the multipath approach does not give
significant improvement unless the number of paths between
a source and a destination is large enough. In [8], the analogy
between information paths in a dense ad hoc network and
light paths in optics was studied, and it was shown that the
routes bend when the spatial density of nodes change in the
network. This analogy was studied in further detail in [9],
where the approach was developed for wireless networks with
energy and bandwidth constraints. The asymptotic capacity of
wireless networks in the number of nodes was studied in [10].

Our approach is distinguished from the body of existing
work in two aspects: (i) We introduce p-norm as a family
of optimization problems for a wireless sensor network in a
general network geometry that is densely covered by sensors,
where varying p results in different properties in the informa-
tion flow. (ii) We use SQP to solve the p-norm problem and
show that the solution to each iteration of SQP is uniquely
defined by an elliptic PDE.

The remainder of this paper is organized as follows: First
we introduce the basic definitions and notations in Section
II. In Section III we give a brief background on formulating
information flow as a vector field and discuss the solutions
in the case where we minimize a quadratic cost function. In
Section IV we introduce the p-norm flow optimization problem
and use SQP to solve this problem. We show how the solution
to each iteration of SQP is found by solving an elliptic PDE.
An illustrative numerical example is given in Section V, and
we conclude the paper in Section VI

II. NOTATIONS AND DEFINITIONS

In this section, we give a brief summary of our notations and
definitions. To avoid confusion, we only introduce notations
that we will use frequently. There are other symbols and
notations that we will introduce where they are first used.

Throughout this paper, boldface characters represent vector
quantities. We use z = (x,y) to represents location in R2
Unless we state otherwise, we use Cartesian coordinate system
to express vector quantities, where iandj represent the unit
vectors along x and y axes, respectively. For a generic vector
quantity we use the notation v = (v,,v,) to represent the
vector, where v, and v,, are the x and y components of v in a
Cartesian coordinate system. Whenever we need to manipulate
a vector as a matrix, we consider the vector as a 2 x 1 matrix:
v =1[v, v,]T.

In order to make PDE expressions simpler, we use the nabla
operator: V = (%i—!— %j; for a vector quantity F = (F}, F},),
the density of sources of the vector field is found by the
divergence of F, which is defined as
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Similarly, V x F represents the density of rotation of F', which
is expressed as:
OF,
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in which k =1 x .
For a scalar function w(z), we use Vu to represent the

gradient of u. Moreover, we use the Laplacian operator, V2,

which appears in the form of Poisson equation in information

flow in the case of quadratic optimization:

®u  O%u
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The network is located in a closed, connected, and bounded
set A € R2 The information sources are distributed with
a spatial density function p(z) € A, which means that at
location z = (x,y) € A, us(z) bps/m? of information
is generated. The information of the sources is needed to
be transported to a set of distributed sinks. The sinks are
distributed according to a density function 4(z) bps/m?.
The total information generated by the sources is equal to
the total information collected by the sinks: | 4 Hs(z)dzdy =
/ 4 Ma(z)dzdy. Based on the above notions, we define the
generalized density of information sources p(z) = us(z) —
1q(z) . Since all the information of sources is transported to
the sinks, we have [, p(z)dzdy = 0.

The p-norm of an n x 1 vector X =

X, = <§j x)

=1

Vi =
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Similarly, the p-norm of function f(z) where f: A — R is:

m=(/ |f<z>|pdxdy)’l’

For a scalar function u(z), where u : A — R, the PDE
82u+2 0%u 82u+b8 +b8
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is the canonical form of a general second order linear PDE on
A. In the above PDE c11, ¢12, €22, b1, bo, and g are A — R
functions. The above PDE is an elliptic PDE if the following
matrix is positive semidefinite for every point z € A:
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III. BACKGROUND: INFORMATION FLOW AS A VECTOR
FIELD

In this section, we give a brief overview of our previous work
on routing in wireless networks by using vector fields. We
briefly state our results here; more complete presentations of
these results can be found in [1,2,11].

In the first step, we define a vector quantity that models
flow of information. Let D(z) = (D, D,) denote this
vector field whose direction represents the direction of flow of
information at point z, and its magnitude represents the density

of information rate passing per unit length of a line segment
perpendicular to the direction of D(z). In other words, if we
consider a line segment with a small length A¢ at z and
perpendicular to the direction of D(z), the information crosses
that line segment with rate |D(z)|A¢. The above definition of
D(z) implies that for a closed contour C' € A we have:

jlg D(z) -dn = / p(z)dzdy (1)
c 5(C)

in which dn is a differential vector normal to the contour
at each point of its boundary and pointing to the outside of
the contour, the dot represents the inner product of vectors in
two-dimensional space, and S(C) is the area surrounded by
the closed contour C'. Equation (1) is analogous to Gauss’ law
in electrostatics theory, and it has a simple interpretation in our
formulation: the rate at which information exits a contour is
the net sum of the sources inside that contour. The following
is known as the Divergence Theorem in vector calculus:

0D, 0D,
D -dn= /
%C S(C)( or 8

Equations (1) and (2) hold for an arbitrary contour C'. This
implies the following PDE form for information flow:

0D, 0D,
or dy

It is important to note that (3) is a representation of the flow
conservation law in continuous form. The boundary condition
of the above PDE is a result of the fact that information is not
intended to exit the boundary of the network or enter it from
the outside. Hence:

*)dzdy 2

V- -D(z) =

= p(2) 3)

Dn(z) =0, z € 0A 4)

in which D,,(z) is the normal component of D(z) on the
boundary of A, and OA represents the boundary of A. This
condition is known as Neumann boundary condition.

An important note about PDE (3) with the boundary condi-
tion (4) is that these equations do not result in a unique value
for D(z). Therefore, we have freedom to impose additional
condition(s) to optimize D(z) such that the resulting vector
field generates a desirable property. In [1,2] we introduced a
quadratic cost function of the information flow vector field D
in order to find a unique solution:

Minimize

/ |D Pdedy ()

S.t. V -D(z
D, (z ):O7 ZGGA

The above form of cost function results in spatial spreading
of the communication load over the space available in the
network. To some extent, it balances the communication
load of the network in such a way that it avoids having a
high load somewhere in the network while the resources are
underutilized somewhere else. Moreover, it is shown in [3]
that minimizing the cost function in (5) minimizes the number



of sensor nodes required to handle the total communication
burden of the network.

Our former result shows that the cost function in (5) is
optimal if and only if the curl of D(z) is zero:

0D, 0Dy -~
)k
dy or
Since V xD = 0, then D is conservative, and it can be written

as the gradient of a scalar potential function: D(z) = VU (z).
This potential function satisfies the Poisson’s equation:

0’U  0*U
ox2  Oy?
The combination of the divergence property, the zero-curl
property, and the boundary conditions uniquely specify D(z).

The boundary conditions of D imply that the partial derivative
of U is zero along the normal direction to the boundary of A.

V x D(z) = (—

V2U(2) = = p(z) (6)

IV. p-norm FLOW OPTIMIZATION PROBLEM

One of the main motivations for using a quadratic cost function
is to disperse the traffic in the network. By spreading the
communication load of the network over the space, we make
the best use of the available resources in the network. This
reduces the interference among the wireless nodes, and in-
creases the overall network throughput. However, the quadratic
cost function does not achieve maximum spatial spreading of
the traffic over the network. In this section, we consider the
following general form of optimization problem:

= [ D@pdsdy
s.t. V -D(z) = p(z)
D,(z)=0, z€ 0A

Minimize

)

in which p > 1 is a real number. Recall that the constraints of
the above optimization problem ensure delivery of the traffic
generated by the sources to the sinks. Note that increasing
the value of p causes the optimization problem to increase
the amount of spatial spreading in the network. To illustrate
this fact consider a point z belonging to an infinitesimal area
dS. Since dS is infinitely small, the value of |D(z)| over
it is almost constant, and hence the contribution to the cost
function due to dS is |D(z)|”|dS|. Now if we double the value
of |D(z)|, then the above value of contribution increases by
a factor of 27. This simple observation suggests that by using
larger values of p, the optimization problem tends towards
solutions that make more spatial spreading, which in turn
results in a better spatial diversity of the network.

An observation about the optimization (7) is that this
problem is equivalent to the case in which we raise the cost

function to power 1/p:
( / |D(z)|? d:zrdy)
s.t. V -D(z)

D, (z )=O7 z€8A

Minimize

®)

Note that the cost function in the recent optimization problem
is the p-norm of the information flow vector field D. Based
on this observation, we call the optimization (7) the p-norm
flow optimization problem.

To further illustrate the fact that increasing p results in more
spatial spreading, we study the case when p — oo in which
p-norm gives the maximum absolute value of |D(z)| over the
network, and the optimization problem becomes equivalent to:

J(D) = (max[D(z))

s.t. V -D(z) = p(z)
D,(z) =0, z€ 9A

Minimize

which is a minmaz problem and minimizes the maximum
value of |D(z)| over the network area A. Apparently the maxi-
mal spatial spreading is achieved in this case, and therefore the
corresponding D(z) is a very attractive case for the purpose
of balancing the traffic load over the network.

Our first observation is that the p-norm flow optimiza-
tion is a convex optimization problem. Recall that D(z) =
(Dy(z), Dy(z)), in which D,(z) and D,(z) represent the x
and y components of D(z), respectively. Hence, if we define

g(Dg, D,) = |D(z)|?, the second derivatives of g is:
9%g 9%g
D2 #D,0D, |
H(g) = 629 629 -
dD,0D, 0D2
. —1)D2+ D2 (p—2)D,D
D2 —|—D2 T4 |: (p x Yy x My
p(D3 + Dj) (p—2)D,D, D2+ (p—1)D2

€))
in which H(g) is the Hessian of g. Performing the eigenvalue
decomposition on H (g) we find:

H(g) =
2 2\ B4 D, _Dy p—1 0 D, Dy
p(Dz+ D)= [Dy D, Ho 1| -p, D,
(10)
Note that the eigenvalues of H(g) are v; = p(p — 1)(D2 +

D2)P/271 and vy = p(DZ + D2)P/271. Therefore, both
eigenvalues are nonnegative, and hence, the matrix H(g)
is positive semidefinite, which implies that g is convex in
(Dg, Dy). We observe that the cost function J in p-norm flow
optimization (7) is the integral of g over the network area, and
the constraints are linear in (D, D,).

A. An Illustrative Example

We study a simple example to illustrate the performance
of p-norm flow optimization on a simple network geometry
shown in Fig. 1. In this example, a source located on the left
hand side of the network generates information at a rate of 6
bps. The information of the source needs to be transmitted to
a destination on the right hand side of the network as depicted
in Fig. 1. There are two geometric paths between the source
and the destination. Both paths have equal widths of W, but
different lengths denoted by L; and Lo, respectively.

For transporting information from the source to the destina-
tion, we assume 6 bps is transmitted through path 1, and 65



Fig. 1. Illustrating effect of the p-norm flow optimization. The amount of 6
bits/sec traffic of a source is divided between to geometric paths. The paths
have different lengths but equal widths. For p — 1 the optimization chooses
the shortest path. For p = 2, it splits the traffic such that 61 L; = 02 L. For
p — o0, the optimization performs load balancing by setting 61 = 6.

is transmitted through path 2. The information is transported
over the two paths by sensors that densely cover the area of
both paths and relay packets from the source to the destination.
The basic definition of D gives the following magnitude for
the information flow vector field on the two paths:

! b2

2D, =22
W’|2| W

Note that the simple network geometry in this example implies
that the value of |D| remains constant along each path but
different for the two paths. The value of the cost function in
this example is:

|Dq| =

D) = [ [D@)rdzdy
A
= |D1|"WLi+ |D2|PW Ly
OVWIPLy + 05W P L,y
We assume that the second path is longer than the first path;
therefore, Lo = kL, where k£ > 1. Hence:

J(D) = W'PLy (6} + k6%)

Flow conservation in this example translates into the constraint
01 + 05 = 0. Forming the Lagrangian function, the optimality
condition is found to be:

0, = k10,

which results in the following optimal values for #; and 65:

br =20, 0= —110

Lk T 1+kP—1

Among values of p, there are three cases of special intlerest:
p—1,p=2,and p — oo. For p — 1, we have kr—T —
oo; hence 01 = 6, and 63 = 0. The p-norm optimization
problem in this case chooses the shortest path from the source
to the destination. While the shortest paths of p ~ 1 result in
minimum delay, they do not use all the network resources and
as shown in this case, one of the paths between the source and
the destination is left completely unused.

The next case of interest is p = 2. For this case we find
0, = k0, or equivalently, 6, L1 = 05 L,. This implies that the
optimization uses both paths, and the amount of information
that is transported on each path is inversely proportional to the
length of that path. In an earlier work, we have shown that
in the case of p = 2, the mathematical model of information

flow vector field has a one-to-one analogy with electrostatics
[1,2]. Additionally the special case of p = 2 leads to optimal
deployment of sensor nodes and requires the minimum number
of sensors to transport the traffic of source to the destination
[3]. Notice that p = 2 uses both paths, but it does not achieve
a complete load balanced solution.

The last case of specialll interest is the asymptotic case of
p — oco. In this case k»~T — 1; hence, 6; = 63 = 0/2. In
this case the optimization problem performs maximum load
balancing, and the problem minimizes the maximum value of
|D| over the network area.

As illustrated in this example, the p-norm flow optimization
problem represents a family of optimization problems in which
the properties of the resulting routes vary significantly by
varying the value of p from one extreme to the other. In
practical situations, the value of p depends on the specific
requirements of each application and the trade-offs between
delay and load balancing.

In the next step, we use the convexity of the p-norm flow
optimization problem to introduce a set of algebraic PDEs that
lead us to the optimal solution.

B. Solving the p-norm flow optimization problem

In order to solve the p-norm flow optimization problem,
we use the SQP iterations. Such iterations are well known for
their numerical stability and good convergence speed [12,13].
Additionally, since the p-norm flow optimization is a convex
optimization problem, the SQP iterations are guarantied to
converge to the global optimum [12]. Each iteration of SQP
method can be summarized in the following two steps:

Quadratic approximation: Having a value for the informa-
tion flow vector field as an operating point at the 7* iteration,
denoted by D), which satisfies the set of constraints given by
the divergence property and Neumann’s boundary conditions,
we find the quadratic approximation of the optimization prob-
lem near D), For this purpose, we assume that the operating
point D is perturbed by a small variation denoted by e, and
hence, we have D = D + e. Then we find the second order
approximation of the cost function J(D) with respect to e.

Optimization: In this step we find e that minimizes
quadratic cost function of the previous step. Convexity of the
p-norm flow optimization problem implies that the quadratic
cost is convex in e. By using the method of Lagrange
multipliers and the geometric interpretation of the divergence
property, we show that the optimal e is found by solving an
elliptic PDE with generalized Neumann boundary conditions.
After solving this PDE, we add the optimal value of e to D)
and find a new operating point.

We repeat the iterations above until a certain stop criterion
is satisfied. We now give a mathematical derivation of SQP
method in p-norm optimization detail. Assume at the it"
iteration D) = (Dg), Dg(f)) is known and satisfies

V-DO(z) = p(z)

) 11
DP(z) =0, z€ A an



in which fo)(z) represents the normal component of the
vector field DO along the boundary at a point z € HA.

Then we define e = (e;,e,) as the variation of the
information flow vector field near D(:

D(z) = DY (z) + e(z) (12)

Since D must satisfy the divergence property and the Neu-
mann boundary conditions of the p-norm flow optimization
problem, we have the following constraints on e:

V-e(z)=0

en(z) =0, z€ 0A (13)

where e, (z) denotes the normal component of e at z € JA.
To find the second order approximation of J(D) near D),
we use the following:

/|D|pda:dy=/ DY 4 ePdzdy
A A
/ DD Pdzdy
A
. 1 .
+ / (eTVg(D(‘)) + 2eTH(g(D(‘)))e> dxdy
A

in which Vg(D®) and H(g(D®)) represent the gradient and
the Hessian of g(D) = |DJ|P with respect to D and evaluated
at D), respectively. The expression in (14) is the first 3 terms
of the Taylor’s series expansion of the function g.

In the next step we find the optimal solution of the quadratic
approximation of the cost function by optimizing over e
subject to the constraints given by (13). The first term in
(14) does not depend on e and can be dropped from the
optimization cost function. Hence, we have the following
optimization problem over e in each iteration of SQP:

Minimize Jéi)(e) = /A
s.t. V-e(z) =0

en(z) =0, z€ 0A

JD) = (14)

Q

(eTR + ;eTQe> dxdy
(15)

in which R = Vg(DW) is a 2 x 1 matrix representing
the gradient of g, and Q = H(g(D®)) is a 2 x 2 matrix
representing Hessian of g, and Jéz) (e) is the cost function in
the 7" iteration of SQP. Note that both  and R are functions
of z. Recall that convexity of g in D implies that Q is a
positive semidefinite matrix, which was shown (10).

We now introduce a scheme that converts the quadratic
optimization problem into an elliptic PDE. For this purpose,
we state the following lemma:

Lemma 1: For the optimal solution of the quadratic opti-
mization problem (15) there exists a scalar function \(z) :
A +— R that satisfies:

VA=Qe+R (16)

Proof: To prove the lemma, we use the following identities:
Identity 1: If v is a scalar function and F is a vector field,
then:

V- -(wF)=vV-F+F- Vv (17

Identity 2: If A is a region in the plane with boundary 0A,
and I is a vector field on A, then

/V-dedy:jg F-dn
A A

in which dn is the differential vector normal to the boundary
of A pointing outward. This identity is the divergence theorem,
which we used earlier in a slightly different form in (2).

We use the Lagrangian method to prove Lemma 1. Note that
for every point z € A, we have V - e(z) = 0. This implies
that for each z € A we need to define the Lagrange multiplier
A(z). This results in the following Lagrangian function:

(18)

1
L(e) = / (eTR+ 2eTQe> dzxdy + / AV -edxdy (19)
A JA
Using Identity 1 for F = e and v = X gives:

V-(Ae)=AV-e+e- VA=

AV-e=V-(le)—e-VA (20)
Substituting this expression for AV - e in (19) gives:
1
Le) = / (eTR + 2eTQe> dxdy (1)
A

+ / V- (he)dxdy — / e Vadzdy
A A

Next we use Identity 2 for F = Ae. This identity implies:

/ V- (Ae)dxdy = % e - dn
A oA

On the other hand, the boundary conditions of e specified in
(13) require that the normal component of this vector field on
the boundary of A is zero. Therefore, we have e -dn = 0 for
every point z € JA, which implies that the right hand side of
(22) is zero. Hence:

(22)

/ V- (Ae)dxdy =0 (23)
A

Substituting the surface integral above in (21) leads us to:

L(e) = /A (eT(R—V)\)+;eTQe> dzdy (24)

Note that we have used e- VA = e” V. The rest of the proof
is based on calculus of variation. In the Lagrangian function

(24), we replace e by @ = e + €', where e : A — R? is a
small variation vector field. The Lagrangian function for € is:

L(8) = /A (éT(R — V) + ;éTQé> dzdy
_ /A ((e + )T (R—VA) + %(e +eNT Qe+ e')) dady

Now we use the fact that €’ is infinitely small; hence, we can
ignore the second order terms. By expanding the integrand and



removing second order terms we find:
1
/ (eT(R —VA) + 2eTQe) dxdy
A

+ / e (R— VA+ Qe)dady
A

LE) =

= L(e)+ / e’ (R—VA+ Qe)drdy (25)
A
Hence the variation of Lagrangian is:

AL :=L(8) — L(e) = / e’ (R—VA+Qe)dxdy (26)

A
Optimality of Lagrangian implies that the above variation is
zero for every e’. Therefore, we can choose € = e(R —

VA + Qe), where € is an infinitely small positive number.
This choice of €' implies that (R — VA + Qe) = 0, and hence
VA = Qe+ R. QED.!

Lemma 1 gives the main key to converting the optimization
problem (15) into a partial differential equation. For this
purpose, we use Lemma 1 to write e in terms of the Lagrange
multiplier A:

e=Q ' (VA-R)

We will discuss later that in all cases of interest to us, ()
is nonsingular; however, it can be ill-conditioned in special
situations. We will discuss later in this section how to handle
such cases. Next, we use V - e(z) = 0 which is the first
optimization constraint in (15). This implies that:

27)

V-e=V-(Q'VA-R)=0 (28)
Equivalently:
V- (CVA) =op (29)
in which:
o - o= g ]
o(z) = V-(Q ' (2)R(2))

O(ricin +1raciz)  O(riciz + rac22)
+
or oy

where 1 and 79 denote the entries of the column vector R =
[r1 m2]T. Since @Q is a positive semidefinite matrix, C = Q!
is also positive definite.

It is straightforward to verify that the second order PDE
(29) is elliptic. To illustrate this we substitute the value of
VA= [0\/0z OM/Oy]T in this PDE:

V. (CVA) = 0=
9(c110\/0x+c1201/0y) 9(c120N/0x+c220N/0y)
ox + oy =0

ILemma 1 can be generalized as follows: consider the optimization:
J(D) = [, f(e)dzdy, subject to: V - e(z) = ¢(z), and e, (z) = 0 where
z € OA, and f : R? — R is a differentiable function. Then the optimiality
conditions are:

of _ox . of o

dey Oz Oey o dy

The proof is similar to the proof of Lemma 1.

which implies:

PA L, o
53 C12 D20y C22 12
8611 8612 o\ 8612 8022 oA
—_—+ =)= —_—+ =)= 30
+ (8x+8y)8x+(8x 8y)8y (30)
= 0
Equivalently:
9%\ 9%\ 9%\ oA oA
011@ +2012m +02287y2 JFbl% + b287y =0 31

where by = (% + ag—;f), and by = (% + %). Since C
is positive semidefinite on A, the PDE in (31) is elliptic.

The final step is to determine the boundary conditions for
A in the elliptic PDE (31). For this purpose, we translate
the Neumann boundary conditions of e into the boundary
conditions for A. Note that we have:

e=C(VA—R)

Hence for a point z € 0A with outward unit normal vector
ii(z) = [n,(z) ny(z)]", we have:

en(z) =0=nTe=0
=nTC(VA-R)=0
= a7(CVA) = aTCR
= (ngenn + nyclg)% + (ngcie + nycm)%‘ —aTCR

which is known as the generalized Neumann boundary con-
dition. The existence and uniqueness of the solution of the
elliptic PDEs with generalized Neumann boundary condition
is a known fact in the context of PDEs [14].

The argument of this section can be summarized in the
following theorem:

Theorem 1: The solution to each SQP iteration is specified
by e = C(VX — R), where X is uniquely specified by the
following elliptic PDE

P,
gz 712 0z0y

with boundary condition

o)
Oy

oA o\
+b17 +627 =0 (32)

2
+ or y

+ Co2

(nmcll —+ nyclg)% —+ (nx612 + nycm)g—;\
=nTCR, zecldA

An important remark is that the matrix () is positive semi-
definite, and it may happen that in some areas of the network,
this matrix is close to singular. This may cause problems in
the elliptic PDE (29), which involves C' = Q~'. Note that the
eigenvalues of Q = H(g) are: vy = p(p—1)(D2+ D2)P/2-1,
and vy = p(D2 + D2)?/>71, and hence, C' will be ill-
conditioned when p — 1, or (D2 + DZ) — 0. Since for all
cases where p > 1 the traffic is spread over the network to
some extent and in practice, |D| is nonzero for all of such
cases; however, the value of |D| can be very small in some
areas of the network, which causes numerical instability in
SQP. A method to avoid numerical instability in such cases
is to replace a close to zero eigenvalue by a very small
positive fixed number € whenever @ is close to singular. The

(33)
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Fig. 2. (a) The information flow vector field for p = 2 used as the initial
value of D in SQP iterations. The sources of information are uniformly spread
on the two highlighted rectangles and the sink is at the center of the square. (b)
Spatial distribution of traffic in the proximity of the sink. The bars show the
values of |D| on 12 evenly spaced directions toward the sink and at distance
r = 0.2 of the sink. The difference between the maximum and the minimum
values of |D| on the 12 directions is 76.88 bps/m.

eigenvalues of () are lower bounded by e after this correction.
Such a correction is standard in SQP when the Hessian matrix
is ill-conditioned [12]. In practice the value of ¢ may be very
small and for example using a value of ¢ = 10~% when Q
is ill-conditioned has shown good stability in all numerical
examples that we have studied.

Our final remark is on solving elliptic PDEs in practical
applications. Fortunately, the canonic form of the elliptic PDE
(32) with the boundary conditions (33) enables us to use the
existing powerful numerical PDE solvers. The above elliptic
PDE appears in different branches of science and engineering
such as electromagnetics, heat exchange, fluid dynamics, and
diffusion. Due to the broad spectrum of the applications, the
numerical elliptic PDE solvers are very well studied and have
reached a high level of accuracy and maturity [14,15]. The
solvers use different techniques such as Finite Element Method
[15] in order to solve the PDE with a high accuracy in a
reasonable time. For example, the Matlab PDE toolbox [16]
is capable of solving an elliptic PDE on a square with 64 x
64 grid point in less than one second.? We need a few SQP
iterations to find the solution of the p-norm flow optimization.
In all numerical examples that we studied, the SQP shows a
fast convergence to the global optima with number of SQP
iterations strictly less than 10.

V. A NUMERICAL EXAMPLE

In this section we present numerical examples that illustrate
the performance of p-norm flow optimization with various
values of p. Each iteration of SQP requires solving an elliptic
PDE for which we have used the PDE toolbox of Matlab?.

We use a network on a 1 x 1 square densely covered by
sensors. The network in this scenario is shown in Fig 2. The
traffic in this network is generated uniformly inside two equal
size rectangles specified by 0.1 < x < 0.2, 0.4 <y < 0.6,
and 0.8 <z <0.9, 0.4 <y <0.6, respectively. The sources
inside the rectangles generate a total of 100 units of traffic.

2The run time was measured on a generic PC with enough memory and
an Intel Pentium IV processor.

3We have used assempde command to solve the elliptic PDEs. This
command solves conic PDEs with canonical form of V - (CVu) 4+ au = f
with Dirichlet, Neumann, or mixed boundary conditions. [16]
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Fig. 3. (a) Information flow vector field after five SQP iterations for p = 8.
(b) Spatial distribution of traffic in the proximity of the sink. The bars show
values of |D| on 12 evenly spaced directions toward the sink and at distance
r = 0.2 of the sink. The difference between the maximum and the minimum
values of |D| on the 12 directions is reduced 5.08 bps/m.

0 01 02

03 04 05 06 17 08 03 1 0 xl2 x 3x/2 2r

fa) b

Fig. 4. (a) Information flow vector field after six SQP iterations for p = 16.
(b) Spatial distribution of traffic in the proximity of the sink. The bars show
values of |D| on 12 evenly spaced directions toward the sink and at distance
r = 0.2 of the sink. Using p = 16, which is a relatively large value of p,
the traffic approaching the sink in different directions is nearly balanced. The
difference between the maximum and the minimum values of |D| on the 12
directions is reduced to 2.084 bps/m, which is a steep decrease compared to
unbalanced cases such as p = 2.

The traffic of the network is intended to be transported to a
sink located at (0.5,0.5).

First, we study the problem with p = 2. In this case
the problem is already quadratic, and we do not need SQP
to find the optimal D. To find D, we solve the Poisson’s
equation given by the PDE (6) for the potential function U
with Neumann boundary conditions fi - VU = 0. Note that
the Poisson’s equation has a simple elliptic form. By taking
the gradient of U we compute D. The resulting value of D
is shown in Fig. 2-a. The relative size of each arrow reflects
the magnitude of D, and its orientation is the direction of D
at the corresponding point.

In order to show how the traffic approaches the sink, we
have plotted the value of |D| on different directions in the
proximity of the sink. The plot in Fig. 2-b shows 12 samples
of |DJ on the perimeter of a small circle with radius r = 0.2
centered at the sink. The horizontal axis of Fig. 2-b shows the
angle between 0 and 27 at which each sample on the small
circle was taken. As can be seen in this figure, the samples
are very uneven, and indeed the difference between the largest
and the smallest samples is 76.68 bps/m. An interesting fact
about this plot is that the sum of the samples is proportional
to the total rate of the traffic being sent to the sink since all
the traffic needs to pass the small circle to reach the sink.

In the next step we use SQP to solve the p-norm optimiza-
tion for p = 8. We use the value of D in the previous case



as the initial information flow vector field for SQP iterations,
DO, The experiments show that after 5 iterations, the SQP
converges with a good accuracy (/D) —D~1)| < 0.1 bps/m).
The resulting value of D is shown in Fig. 3-a. As can be
seen, the distribution of the traffic changes in the proximity
of the sink and the traffic approaches more evenly from the
different directions of the sink. This fact is better visualized in
Fig. 3-b, where similar to before, we have plotted 12 evenly
spaced samples of |D| on the perimeter of a small circle with
radius r = 0.2, centered at the sink. In this case, the difference
between the largest and the smallest samples reduces to 5.084
bps/m, which shows a steep decrease compared to the case
with p = 2.

Similarly, for p = 16, the values of D, and the 12 samples
of |D| in proximity of the sink are shown in Fig. 4-a and
Fig. 4-b, respectively. In this case, the SQP converges after
6 iterations. As can be seen in Fig. 4-b, the pattern of traffic
is very uniform in the proximity of sink and the amount of
traffic approaching the sink from different directions is almost
equal. In this case, the difference between the largest and the
smallest samples reduces to 2.084 bps/m. Since p = 16 is a
relatively large value of p, the problem has already achieved
an almost load balanced solution. Balancing traffic helps the
network resources to be utilized in a more even way. Also
when the traffic is balanced, we can improve the capacity of
the sink (e.g., by spatial multiplexing or space diversity). Since
the sink is the major bottleneck of the network, increasing its
capacity improves the overall capacity of the network. For
example, the sink can use multiple directional antennas to
differentiate the signal received on each direction (e.g., 12
identical directional antennas in the case of this example). In
such a design, the sink performs a spatial multiplexing on
the traffic approaching it in different directions, and therefore,
achieving the maximum capacity is only possible when the
amount of the traffic received through different directional
antennas is balanced.

VI. CONCLUSION

In this paper, we presented a family of optimization prob-
lems in which the objective is to minimize p-norm of the
vector quantity that models flow of information. We use a
mathematical model that translates a communication network
composed of a large but finite number of sensors into a
continuum of nodes on which information flow is formulated
by a vector field. The magnitude of this vector field is the
intensity of the communication activity, and its orientation is
the direction in which the traffic is forwarded. The information
flow vector field satisfies a set of Neumann boundary condi-
tions and a PDE involving the divergence of information, but
the divergence constraint and Neumann boundary conditions
do not specify the information flow vector field uniquely, and
leave us freedom to optimize certain measures within their
feasible set.

In order to solve the p-norm flow optimization problem, we
used an SQP method, which is known for fast convergence
and good numerical stability in general optimization problems.

We showed that each iteration of SQP for p-norm flow opti-
mization leads us to solving an elliptic PDE with generalized
Neumann boundary conditions. Solving the elliptic PDE is
easy since this PDE has a canonical form similar to the elliptic
PDEs appearing in other branches of science and engineering
such as electromagnetics, heat exchange, fluid dynamics, and
there are many powerful tools to solve such PDEs with good
accuracy and in reasonable time. We showed that the solution
of p-norm optimization problem has different properties for
different values of p. For example, if p ~ 1, the optimization
gives routes that have a tendency to transport the traffic of
sources to the sink on the shortest geometrical paths. On the
other hand, p — oo minimizes the maximum magnitude of the
information flow vector field over the network, and therefore,
it achieves load balancing. While the solutions for the extreme
of p ~ 1 minimize delay, the larger values of p make a more
uniform use of the network resources by spreading out the
traffic over all possible paths between the sources to the sinks.
In practice, the value of p depends on the requirements and
the trade-offs between delay and load balancing.
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