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Grooming Multicast Traffic in
Unidirectional SONET/WDM Rings

Anuj Rawat, Richard La, Steven Marcus, and Mark Shayman

Abstract— In this paper we study the problem of efficient
grooming of given non-uniform multicast traffic demands on a
unidirectional SONET/WDM ring. The goal is to try to minimize
the network cost as given by (i) the number of wavelengths
required per fiber and (ii ) the number of electronic Add-Drop
Multiplexers (ADMs) required on the ring. The problem is NP
hard for both the cost functions. We observe that the problem
with cost function (i) can be reduced to a corresponding traffic
grooming problem for unicast traffic which can then be modelled
as a standard circular-arc graph coloring problem. For cost
function (ii ), we construct a graph based heuristic and compare
it against the multicast extension of the best known unicast
traffic grooming heuristic [1]. We observe that our heuristic
requires fewer ADMs than required by the multicast extension
of the unicast heuristic given in [1]. We also develop a lower
bound and compare it against some upper bounds to study
the maximum penalty of not employing intelligent wavelength
assignment and/or traffic grooming under the unidirectional
SONET/WDM ring scenario.

Index Terms— Graph theory, SONET ring, traffic grooming,
wavelength division multiplexing (WDM).

I. I NTRODUCTION

W AVELENGTH Division Multiplexing (WDM) signifi-
cantly increases the available network bandwidth ca-

pacity by delivering data over multiple wavelengths (channels)
simultaneously. With each channel operating at a high rate
(currently ∼ 10 Gb/s) and multiple channels deployed per
fiber (currently ∼ 320 wavelengths per fiber), very high
transmission capacities (currently∼ 3.2 Tb/s) can be achieved.
An important issue with such a high capacity network is that
it places enormous burden on the electronic switches. Hence,
it is hardly surprising that the dominant cost in WDM based
networks is the cost of the electronic switching equipment
required. Fortunately it is not necessary to electronically
process all the incoming traffic at each node since most of the
incoming traffic is neither sourced at that node nor destined
to it. So to reduce the cost of electronic components at each
node, we can selectively drop the wavelengths carrying traffic
that requires electronic processing at that node and allow the
remaining wavelengths to optically bypass the node.

Typically in WDM based optical networks, the bandwidth
available per wavelength is much larger than the bandwidth
required per session, and with the advancement of optical
technology, it seems likely that this mismatch will continue to
grow in the near future. Hence for efficient bandwidth usage,
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it is prudent to combine several low rate traffic sessions onto
a single wavelength. The problem ofeffectivelypacking lower
rate traffic streams onto the available wavelengths in order
to achieve some desired goal is calledtraffic grooming. If
the traffic demands are known in advance, then the problem
is calledstatic, otherwise the problem is calleddynamic. In
static traffic grooming, usually the aim is to minimize the
overall network cost. Here the network cost includes the cost
of electronics (this is the dominant cost) as well as the cost of
optics (wavelengths per fiber). In dynamic traffic grooming,
the aim is to groom the incoming traffic demands such that
the blocking probability is minimum. In this work we are
interested in the static traffic grooming problem.

The inherent reliability and high bandwidth capacity of a
WDM based Synchronous Optical Network (SONET/WDM)
ring has made it the architecture of choice in the current
network infrastructure. Typically, in a SONET/WDM ring
each wavelength operates at a line rate of OC-N1 and can
carry several low rate OC-M (M ≤ N ) traffic channels
using Time Division Multiplexing (TDM). The timeslots on a
wavelength are referred to as thesubwavelength channels.

Electronic Add-Drop Multiplexers (ADMs) are required to
add (drop) the subwavelength traffic at the source (destination)
node. On receiving a wavelength channel, the ADM, corre-
sponding to that particular wavelength, can add/drop timeslots
on the wavelength channel without disrupting the onward
transmission of other timeslots on the wavelength. So if a
node (sayn) does not act as a source or a destination for any
traffic on some wavelength (sayλ), i.e., if no add/drop of any
timeslot onλ is required atn, then there is no need for an
ADM corresponding to wavelengthλ at noden. Since the cost
of the ADMs (electronics) form the bulk of the network cost
[2], we can see that intelligent grooming of low-rate traffic
onto wavelengths can result in ADM savings, which results in
a lower network cost.

Grooming static unicast subwavelength traffic to minimize
either the number of ADMs or the number of wavelengths
required per fiber in WDM ring networks is a well studied
problem [1][2][3]. Different traffic scenarios such as uniform
all-to-all traffic [3][4], distance dependent traffic [2] and non-
uniform traffic [1][5] have been studied. Work has also been
done on other cost functions such as the overall network cost
[6], which includes the cost of transceivers, wavelengths and
the number of required hops. Recently there has been a lot of
work on grooming both static [7] as well as dynamic [8][9][10]

1OC-N (Optical Carrier-N ) is a SONET standard designating a fiber optic
circuit operating atN times 51.84 megabits per second, i.e.,N times the
operating rate of STS-1 (Synchronous Transport Signal-1).
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traffic in mesh networks. References [11] and [12] provide an
excellent review on the problem of grooming unicast traffic in
WDM networks.

While most of the earlier studies of the traffic grooming
problem have dealt exclusively with the unicast traffic, it is
expected that in the future a sizable portion of the traffic
will be multicast in nature. This is mainly because of the
increasing demand of multicast services such as multimedia
conferencing, video distribution, collaborative processing, etc.
Grooming multicast traffic is still an area of active research
and although a lot of literature is available, not many results
are known. Most of the work in the multicast case has focused
on heuristics for grooming multicast traffic in WDM mesh
networks under non-uniform static [13] as well as dynamic
traffic [14][15][16][17][18][19] scenarios.

Although multicast traffic grooming in mesh WDM net-
works is a general case of the same problem in WDM
rings, the ideas that are applied for mesh networks in
[13][14][15][16][17][18][19] are not very attractive for uni-
directional rings. The difference between the mesh and uni-
directional ring cases is that, in mesh networks there are
many possible routings for each traffic demand whereas in
unidirectional rings the routing is fixed and we have control
over wavelength assignment only. All of the heuristics for
grooming multicast traffic in mesh networks take advantage of
the multiple routings possible and the wavelength assignment
is usually trivial (first fit). This is clearly not desired for
grooming in unidirectional rings, since for unidirectional rings
the routing is already fixed and the only way to effectively
groom traffic is by using intelligent wavelength assignment.
Although most of the work on multicast traffic grooming looks
at mesh WDM networks, there has been some work in the case
of WDM rings also. More specifically, in [20] the authors look
at the problem of grooming given multicast traffic demands in
a bidirectional WDM ring. They present a heuristic algorithm
inspired by the algorithm to groom unicast traffic demands on
WDM rings given in [1]. We shall compare this to our work
in more detail once we state our exact problem.

In this paper we look at the problem of static groom-
ing of non-uniform multicast traffic on a unidirectional
SONET/WDM ring. In general, the SONET ring nodes may
or may not have SONET digital-cross connects (DXCs) and
wavelength converters. SONET DXCs and wavelength con-
verters are expensive components so in this work we assume
that the network nodes do not have wavelength converters
and SONET DXCs. Since the ADMs do not have wavelength
conversion or timeslot changing functionality, the absence of
wavelength converters and SONET DXCs implies wavelength-
continuity and timeslot-continuity constraints in the network.
This sort of network setup for grooming unicast traffic has
been categorized as asinglehop ring [21]. In another type
of network setup some nodes of the network use SONET
DXC to consolidate or segregate subchannels (timeslots on
a wavelength). This setup is referred to as amultihop ring
[21]. Hence in this work we are concerned with the singlehop
ring case for grooming multicast traffic.

We consider two different cost functions (i) the number of
wavelengths required per fiber and (ii ) the total number of
ADMs. We observe that for cost function (i), the problem can

be modeled as a circular-arc graph coloring problem. Thus, the
standard coloring techniques apply. We then suggest a graph
based heuristic for cost function (ii ). We extend the traffic
grooming heuristic for non-uniform unicast traffic given in [1]
to the multicast case and compare this multicast extension to
our heuristic. We also develop a lower bound on the number
of ADMs and compare it against some of the upper bounds
to get interesting insights into the problem.

The problem that we study here is quite different from the
problem studied in [20]. The main difference, other than the
fact that we study unidirectional rings while [20] looks at
bidirectional rings, is that the cost function used is different.
We consider the number of ADMs and the number of wave-
lengths required per fiber as our cost, whereas in [20], the total
number of ports ofe-DACnodes in the network is considered
as the cost. In [20], the authors define two different types of
nodes,o-DACande-DACnodes. When all the traffic on all the
incoming wavelengths needs to be forwarded, o-DAC nodes
are used since the splitting can be done in the optical domain.
If this is not the case then e-DAC nodes are used. Note that
the cost functions are not the same since we require ADMs at
all the nodes where some traffic needs to be dropped whereas
in [20], even the nodes where there is some drop traffic can
be treated as o-DAC nodes. Another important difference is
that in [20], the authors consider a multihop ring whereas we
look at a singlehop ring.

The rest of the paper is organized as follows. In Section II,
we state our assumptions on the network, the traffic and the
node architecture. Here we also state the precise problem. In
Section III we model the problem (for both the cost functions)
using graphs. We present our heuristics in Section IV. In
Section V, we develop and study some lower and upper
bounds. In Section VI, we present the complexity analysis
for the grooming schemes introduced in this work. Section VII
presents the simulation results. Finally Section VIII concludes
the paper. For quick reference, Table I lists some of the
improtant symbols and notations used in the paper along with
brief explainations.

II. PROBLEM STATEMENT

A. Physical Network

The physical network is assumed to be a clockwise unidi-
rectional WDM ring withN nodes numbered0, 1, . . . , N − 1
distributed on the ring in the clockwise direction as shown in
Figure 1(a). We assume that there is a single fiber between
adjacent nodes, which can supportW wavelengths given by
λ0, λ1, . . . , λW−1 and the capacity of each wavelength is
assumed to beC units.

Also, as noted in Section I, we assume that the network
nodes do not have wavelength converters and SONET DXCs.
This implies timeslot-continuity and wavelength-continuity
constraints in the network.

B. Assumptions On Traffic

We assume that there areM given multicast traffic requests
denoted byR0, R1, . . . , RM−1. Every multicast request spec-
ifies a source node and a set of destination nodes. We assume
that each multicast request is forr units of traffic. Also, the
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TABLE I

L IST OF IMPORTANT SYMBOLS

Symbol Stands for

N number of nodes in the SONET ring

M number of multicast sessions

g grooming ratio

N ′ number of nodes which act as a source or a destination for at least one multicast request

Wmin minimum number of wavelengths required per fiber

G = (V, E) contention graph with vertex setV representing the multicast requests

χ chromatic number of graphG

G[Ci]
subgraph induced by vertex setCi ⊆ V (representing the multicast

requests groomed on wavelengthλi) on the contention graphG

χ(G[Ci]) chromatic number of graphG[Ci]

Sv
set consisting of source and destinations for the multicast traffic

request corresponding to vertexv ∈ V

σ = {Cσ
0 , Cσ

1 , . . . } partition of vertex setV into nonoverlapping clusters such that
⋃

i Cσ
i = V ,

Cσ
i

⋂
Cσ

j = ∅ andχ(G[Cσ
i ]) ≤ g

Σ set of all valid partitioning

Gi ≡ G[Vi]
subgraph induced by vertex setVi ⊆ V (representing the multicast requests which

contain network nodei as source or some destination) on the contention graphG

χi chromatic number of graphGi

ki number of multicast sessions which contain network nodei as source or some destination

αi number of multicast sessions which contain network nodei as an intermediate destination

βi number of multicast sessions which contain network nodei as the source

γi number of multicast sessions which contain network nodei as the final destination

Ĝi ≡ G[V̂i]
subgraph induced by vertex set̂Vi ⊆ V (representing the multicast requests which

contain network nodei as source or final destination) on the contention graphG

wi maximum width of interval grapĥGi

zi size of ai− th multicast sessionRi

zmin minimum possible size of multicast sessions

zmax maximum possible size of multicast sessions

zavg average size of multicast sessions

F c.d.f. according to which sizes of multicast sessions are distributed

µF mean of c.d.f.F
Uwc worst case upper bound on the number of ADMs

UAlgo−A upper bound on the number of ADMs required by AlgorithmA

UAlgo−B upper bound on the number of ADMs required by AlgorithmB

L lower bound on the number of ADMs

L2, L3 other lower bounds on the number of ADMs

wavelength capacityC is assumed to be an integral multiple
of the required traffic rater, i.e., C = g × r. We refer to
g, the number of subwavelength multicast demands that can
be groomed on a single wavelength channel, as thegrooming
ratio. Assuming an integral grooming ratiog is justified in
case of SONET rings, since in SONET networks the capacity
of a single wavelength (OC-192, OC-48, etc.) is usually an
exact multiple of the bandwidth requirement for an individual
traffic request (OC-3, OC-12, etc.). Note that for SONET
rings, we can assume without loss of generality thatr is
equal to the capacity of individual subwavelength channels
(timeslots). Hence, the grooming ratiog is equal to the number
of subwavelength channels available on each wavelength.

With the above traffic model we can consider multicast
requests of different bandwidth requirements also. The im-
portant requirement is that each request should be splittable
into individual multicast requests of granularityr.

C. Node Architecture

Most of the current work on multicast traffic in optical
networks uses multicast capable nodes called Splitter-and-
Delivery nodes and multicast incapable nodes with drop-and-
continue capability. In this work, since we are looking at ring
networks, we do not require the nodes to split the incoming
light over multiple outgoing links to form light-trees. This
is because here the light-trees are just arcs on the ring as
shown in Figure 1(a), and the nodes with drop-and-continue
capability suffice. The architecture for the drop-and-continue
capable nodes used in the ring network is similar to the Tap-
and-Continue node architecture first given in [22]. In fact the
Tap-and-Continue nodes used in this paper are much simpler
than the nodes in [22], since here we only have a single
incoming and outgoing fiber per node and therefore no optical
switching is required.

As shown in Figure 1(a), if a lightpath is set-up between
nodes i and j on wavelengthλl, and traffic from i to an
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(a) Unidirectional SONET ring with tap-and-continue nodes.

tap

tap bank

2 × 1 switch

fiber

multiplexer

λW−1

demultiplexer

low rate traffic to be added

ADM bank

low rate dropped traffic

switch bank

λ0

(b) Tap-and-continue node architecture.

Fig. 1. Network and node model.

intermediate nodek is also groomed onλl or i has to send the
same traffic tok (this is the case wheni is the source andj
andk are the destinations of a multicast traffic request), then
instead of terminating the lightpath atk, we can drop a small
amount of light of wavelengthλl at k to extract the required
data packets and let the rest of the light flow through, i.e.,
we cantap the lightpath at any intermediate node. It should
be clear that if we want to add (groom) some subwavelength
traffic on wavelengthλl at nodek, then we have to tear down
the lightpath atk, carry out the grooming and then set-up a
new lightpath on wavelengthλl at nodek. Note that in case we
are sending different traffic to nodesj andk from nodei on a
single lightpath (by tapping the lightpath at intermediate node
k), then using the above scheme, after passing nodek there
would be some unnecessary traffic on the lightpath (traffic sent
from i to k). Clearly there is no such bandwidth wastage when
we are sending the same traffic to both the nodesj andk.

The Tap-and-Continue node architecture that we consider
in this paper is shown in Figure 1(b). First the incoming
light is split into individual wavelength channels using a
demultiplexer. Then each wavelength channel passes through
a tap bank. Here we have an option of tapping a small amount
of power from the wavelength and sending it to the ADM bank
to separate it into its constituent lower rate components. The
switch bank consists of2×1 switches for each wavelength. If
no new traffic is added on a wavelength, it is allowed to pass
through the switch but if a new lightpath is being initiated
at some wavelength then the signal coming from the ADM
banks consisting of the groomed traffic is switched forward.
Finally the wavelengths are combined using a multiplexer and
sent over the outgoing fiber.

Note that at any node, in the ADM bank, we require the
ADMs only for wavelengths which are being processed at that
particular node, i.e., we require ADMs for all the wavelengths
which correspond to the lightpaths that are being dropped or
terminated or initiated at that node.

D. Objective

The objective is to minimize the network cost. As noted
in Section I, the cost of the network is equivalent to the cost
of the network components and the dominating cost among
all the components is the cost of ADMs. We also noted
that another cost function that is usually considered is the
number of wavelengths required per fiber. In this work we
study the problem of traffic grooming under the following
two objectives.

(i) Minimize the number of wavelengths required per fiber.
(ii ) Minimize the total number of ADMs required in the
network.

If we count the number of logical hops required by (possibly
multihop) paths between all the source-destination pairs, then
this gives us an estimate of thesize of the logical network.
Since O-E-O conversions introduce delay2, the size of the
network provides us with a measure of the overall delay in
the system. Usually we also want to reduce the delay and
therefore the size of the network. An important advantage of
using Tap-and-Continue nodes instead of regular nodes is that
we can achieve reduction in the network size.To show this we
consider the following example. Let us assume that we have a
multicast requestR having network node0 as its source and
network nodes1 and 2 as its destinations. If we use regular
nodes in the ring then we can configure the lightpaths in either
of the two ways listed below.

(i) Set up a light path between nodes0 and1 and another
lightpath between nodes1 and 2. To save ADMs and
conserve the wavelengths used we can use the same
wavelengthλ0 for both the lightpaths. Figure 2(a) depicts
this configuration. Note that this requires a total of3
ADMs and1 wavelength. The network size achieved by
this configuration is equal to3 logical hops (1 for s-d
pair 0− 1 and2 for s-d pair0− 2).

(ii ) Set up a light path between nodes0 and 2 on wave-
length λ0 and set up another lightpath on a different

2O-E-O conversions introduce the dominant delay in the network.
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(c) TaC nodes: requires3 ADMs, 1
wavelength,2 logical hops.

Fig. 2. Advantage Of using TaC nodes.

wavelengthλ1 between nodes0 and1. This configuration
is shown in Figure 2(b). It is clear that since both the
lightpaths are carrying the same traffic, we are wasting
bandwidth in this scenario. This configuration requires a
total of4 ADMs and2 wavelengths. But now the network
size is equal to2 logical hops (1 hop each for both the
s-d pairs).

In case we use Tap-and-Continue nodes in the ring, we can
simply setup a single lightpath on wavelengthλ0 between
nodes 0 and 2, and tap this lightpath at node1. Figure
2(c) depicts this configuration. Here we need3 ADMs, 1
wavelength and the network size is2 logical hops (1 hop each
for both the s-d pairs3). Thus we can simultaneously achieve
reduction in the number of ADMs, number of wavelengths and
the network size. Therefore it makes sense to employ Tap-and-
Continue nodes rather than regular nodes on the ring.

III. M ODELING

A. Minimizing Wavelengths

First we look at the case where the objective is to minimize
the number of wavelengths required per fiber irrespective of
the number of ADMs used in the network.

Since we assume the network to be a clockwise unidirec-
tional ring, each traffic request can be treated as an arc on the
ring starting from the source and going clockwise through the
intermediate destinations (drop points) up to thefinal desti-
nation (termination point). Now the wavelength and timeslot
continuity constraint implies that each arc (traffic request)
should be assigned one subwavelength channel. So if any two
multicast requests share some fiber, i.e., the corresponding
arcs overlap, then they cannot be groomed on the same
subwavelength channel (although they can still share the same
wavelength channel). We use this observation to model the
problem of minimizing the number of wavelengths per fiber
as a graph coloring problem. Consider a graphG = (V,E)
where V = {v0, v1, . . . , vM−1} is the set of vertices4 with

3We only require1 logical hop for s-d pair0−2 because the traffic reaching
from node0 to node2 remains in optical domain at the intermediate node
1, i.e., it does not undergo O-E-O conversion anywhere on the path from the
source to the destination.

4Note that in this work, we refer to the nodes on the SONET ring asnodes
and the nodes of any graph used in the problem modelling (such asG, where
each node represents a traffic request) asvertices.

each vertexvi representing a multicast requestRi and there
is an edgevivj ∈ E if and only if the multicast requests
Ri and Rj share some fiber, i.e., the arcs corresponding
to requestsRi and Rj overlap. The graphG is refered to
as thecontention graphbecause the adjacent vertices inG
represent the traffic requests which cannot be groomed on the
same subwavelength channel. Now the problem of assigning
subwavelength channels to the multicast requests such that
we need the minimum number of wavelengths per fiber is
equivalent to coloring the vertices of the contention graphG
with the minimum number of colors such that no two adjacent
vertices share the same color. This is the standardminimum
graph coloringproblem. Note that here each color signifies a
subwavelength channel and not a complete wavelength.

We denote the minimum number of colors required for
coloring contention graphG, also known as thechromatic
numberof the graph, byχ. Since the minimum number of
subwavelength channels required to groom the given traffic
requests is equal toχ and since each wavelength containsg
subwavelength channels, the minimum number of wavelengths
required per fiber is given by

Wmin =
⌈

χ

g

⌉
(1)

An interesting observation is that minimizing the number
of wavelengths required per fiber is independent of the fact
that we are looking at multicast traffic. This is because we are
modelling the traffic requests as arcs on a circle and this model
only preserves the information about the source and the final
sink of the traffic requests. So if we consider the given traffic
requests to be unicast with source and sink nodes the same
as the source and final sink nodes of the multicast requests
R0, R1, . . . , RM−1, then we obtain the same contention graph
G and therefore the same solution for minimizing the number
of wavelengths required per fiber.

Another observation is that the graphG belongs to the
family of circular arc graphs[23]. Since minimum coloring
of circular arc graphs is NP complete [24] and any instance
of minimum arc graph coloring can be reduced to the traffic
grooming problem under study, grooming multicast (or uni-
cast) traffic on a unidirectional ring to minimize the number
of wavelengths required per fiber is NP complete.
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B. Minimizing ADMs

Now we consider the case when the objective is to minimize
the ADMs required in the network under the timeslot and
wavelength continuity constraint.

For modeling this problem we again represent multicast
requests as arcs on the ring and construct the contention graph
G = (V,E) as described in Section III-A. Also to each vertex
vi ∈ V (corresponding to multicast requestRi), we assign a
setSvi

consisting of the source and the destinations for request
Ri.

Consider the vertex setCi ⊆ V representing all the
multicast traffic requests groomed on wavelengthλi. Note
that the contention graph corresponding to the traffic requests
represented byCi is exactly equal toG[Ci], the subgraph
induced by vertex setCi on the contention graphG. Now
as described in Section III-A, the minimum number of sub-
wavelength channels required to groom the traffic requests
represented byCi is given byχ(G[Ci]), the chromatic number
of the contention graph corresponding to the particular set of
traffic requests. So the traffic requests represented byCi can
be groomed on a single wavelength only ifχ(G[Ci]) ≤ g, i.e.,
the subgraphG[Ci] induced on the contention graphG by the
vertex setCi is g-colorable. Also in this case the number of
ADMs corresponding to wavelengthλi required in the network
is equal to|⋃v∈Ci

Sv|.
So given a set of multicast traffic requests modeled by

the contention graphG = (V, E), any valid traffic grooming
can be modeled as a partitioningσ = {Cσ

0 , Cσ
1 , . . . } of the

vertex setV into non-overlapping clustersCσ
0 , Cσ

1 , . . . such
that

⋃
i Cσ

i = V , Cσ
i

⋂
Cσ

j = ∅ for all i 6= j and G[Cσ
i ]

(subgraph induced by vertex setCσ
i on contention graphG) is

g-colorable for alli. Also, the cost (number of ADMs required
in the network) corresponding to partitioningσ is given by

∑

i

|
⋃

v∈Cσ
i

Sv| (2)

Now let Σ denote the set of all such partitionings. Then our
problem reduces to finding the partitioningσ ∈ Σ which
minimizes the required number of ADMs as given in (2).

Note that since the problem of grooming unicast traffic on
unidirectional rings in order to minimize the number of ADMs
required is NP complete [2], and the multicast traffic grooming
is at least as hard as the unicast case, grooming multicast traffic
on unidirectional rings to minimize the ADMs is NP hard.

IV. H EURISTICS

A. Minimizing Wavelengths Per Fiber

As described in Section III-A, minimizing the number of
wavelengths required per fiber can be modeled as a circular arc
graph coloring problem. The contention graph to be colored
is obtained as described in Section III-A and the minimum
number of wavelengths required is given by (1). Although
circular arc coloring is NP complete [24], there are several
approximation algorithms [25][26] available in the literature.
Kumar et. al. [25] give a randomized algorithm with approx-
imation ratio (1 + 1/e + o(1)) for instances of the problem
needing at leastω(ln(n)) colors, wheren is the number of
arcs to be colored. In [26], Karapetian et. al. present a3/2

approximation algorithm for circular arc coloring. Either of
these two algorithms can be used to color the contention graph
in our problem. Since these algorithms suffice for minimizing
the number of wavelengths required per fiber and they have
already been well studied in the literature, we will not discuss
this cost function any further in this paper. Now we go on to
the more interesting problem of minimizing the total number
of ADMs required in the network.

B. Minimizing ADMs

We consider agraph basedheuristic approach to minimize
the number of ADMs required in the SONET ring. The basic
idea of the heuristic is to start off by assigning different
wavelengths to each of the multicast sessions. Now at every
step of the algorithm we update the wavelength assignment by
selecting two wavelengths and assigning a single wavelength
to all the multicast requests previously assigned to these two
wavelengths. Obviously we cancombinea wavelength pair in
this manner only if all the corresponding multicast sessions
can indeed be groomed on a single wavelength. The order in
which the wavelength pairs are considered for combination is
based on the fact that if the multicast sessions assigned to two
wavelengths share several source/destination nodes, then we
can save a lot of ADMs by using a single wavelength for all
these sessions.

In more detail, we first construct the graphG = (V, E) and
determine the setSv corresponding to each nodev ∈ V , as
discussed in Section III-B. Now letH(n) = (Λ(n), L(n)) be
the weighted graph representing the wavelength assignment
after n steps of the heuristic. Here the vertex setΛ(n) repre-
sents the wavelengths and corresponding to each wavelength
λi ∈ Λ(n) we have a set of multicast requestsCi ⊆ V
to which this wavelength is assigned. With slight abuse of
notation letSλi =

⋃
v∈Ci

Sv denote the set of nodes which
act as source or destination for any multicast session being
groomed on wavelengthλi. Now there is edgeλiλj ∈ L(n)
if the multicast requests corresponding to the two wavelengths
have some common source/destination nodes and the weight
of the edge is given byc(λiλj) = |Sλi

⋂
Sλj |. Note that we

can combine any two wavelengthsλi andλj if the subgraph
induced by the node setCi

⋃
Cj on the contention graphG

is g-colorable. If this is so then the two wavelengths are said
to be reducible. Also note that if we combine wavelengthsλi

andλj into a new wavelengthλk, then the number of ADMs
required by wavelengthλk is

|Sλk
| = |Sλi

⋃
Sλj | = |Sλi |+ |Sλj | − c(λiλj) (3)

But now after combining wavelengthsλi andλj , we no longer
need any ADMs on these two wavelengths, therefore we end
up saving|Sλi | + |Sλj | − |Sλk

| = c(λiλj) ADMs. So at the
(n + 1)th step we determine the reducible wavelength pair
λα, λβ ∈ Λ(n) such that for any reducible wavelength pair
λi, λj ∈ Λ(n), c(λαλβ) ≥ c(λiλj). If there is more than
one such wavelength pair, let the set of all such wavelength
pairs beΛ̂. Now we pick the wavelength pairλα, λβ ∈ Λ̂
such that for any wavelength pairλi, λj ∈ Λ̂, |Sλα

⋃
Sλβ

| ≤
|Sλi

⋃
Sλj |. This is motivated by the fact that if|Sλi | is large

for wavelengthλi then there is a high chance of having a
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larger cost edge incident on this vertex at some later iteration
in the algorithm, so we may not want to use wavelengthλi

in this step for a smaller ADMs saving. If there are still some
ties left, then we select any wavelength pair from the possible
choices. Now we update the graphH(n) to graphH(n + 1)
by replacing verticesλα, λβ with a single vertexλαβ and
recomputing all the edges and weights. By this we mean that
we contract the edge between verticesλα, λβ into the new
vertex λαβ with Sλαβ

= Sλα

⋃
Sλβ

. Clearly the only edges
affected are the edges that were incident on eitherλα or λβ .

We continue until there is no reducible wavelength pair. It
is clear that the maximum number of iterations is bounded by
the number of multicast requests, since initially the number
of wavelengths is equal to the number of multicast requests,
and each iteration reduces the number of wavelengths by one.

Algorithm 1 Minimizing ADMs

Require: GraphG = (V, E) and for everyv ∈ V , setSv as
described in Section III-B.

Ensure: minσ∈Σ

∑
i|
⋃

v∈Cσ
i

Sv|
where σ = {Cσ

0 , Cσ
1 , . . . } is a valid partition of vertex

setV as described in Section III-B andΣ is the set of all
such valid partitionings.

1: Construct graphH(0) = (Λ(0), L(0)) with Λ(0) = V and
evaluate the edge weightsc(λiλj) for every edgeλiλj ∈
L(0).

2: condition ⇐ TRUE
3: while condition is TRUE do
4: Determine the reducible wavelength pairπ = λαλβ ∈

L(n) having the largest edge weight among all the
reducible wavelength pairs. If there are several such
pairs λi, λj , then select one with minimum value of
|Sλi

⋃
Sλj |. If there are still ties then pick any of the

possible choices randomly.
5: if ∃ suchπ then
6: Construct graphH(n + 1) from graphH(n) as de-

scribed in Section IV-B and update the edge weights.
7: else
8: condition ⇐ FALSE
9: end if

10: end while

Note that the circular arc graphs form an intersection
class of graphs [27] and are therefore closed under induced
subgraph [27]. Also, as described in Section III-A, graphG
belongs to the family of circular arc graphs, so any induced
subgraph of graphG is also a circular arc graph. And since
coloring circular arc graphs is NP hard, to check whether
an induced graph of graphG is g-colorable or not (this is
what we need to check in order to determine whether a given
wavelength pair is reducible or not) is also NP hard. So instead
of doing this we color the induced subgraph using Tucker’s
algorithm for coloring circular arcs [23] and see if we need
more thang colors. Clearly this is sub-optimal but we use this
since in general Tucker’s algorithm gives a good bound on the
chromatic number.

The complete heuristic is given as Algorithm 1.

i

# arcs = αi
# arcs = δi

# arcs = γi# arcs = βi

Fig. 3. Bounds: observe each network node separately.

V. BOUNDS

A. Lower Bound

To get a lower bound on the total number of ADMs
required, we consider each node of the network separately.
We look at all the multicast requests having network nodei ∈
{0, . . . , N − 1} as either the source or one of the destinations
and try to use as few ADMs as possible on the network node
i to support these requests. To do this we construct graph
Gi = (Vi, Ei) whereVi = {v ∈ V : i ∈ Sv} is the set of
vertices corresponding to multicast requests having network
nodei as source or one of the destinations and there is an edge
vjvk ∈ Ei if and only if the corresponding multicast requests
Rj and Rk share some fiber. NowGi is exactlyG[Vi], the
subgraph induced by vertex setVi ⊆ V on contention graph
G described in Section III-A. Letχi be the chromatic number
of graphGi. Since all the requests represented by the vertex set
Vi have network nodei as either source or some destination,
nodei must have ADMs corresponding to all the wavelengths
on which any of these requests are groomed. So in order to
use the minimum number of ADMs at nodei (irrespective of
the number of ADMs required at other nodes), we need to
groom the traffic requests represented by vertex setVi on as
few wavelengths as possible. Using the argument from Section
III-A, the set of multicast requests that have network nodei as
either the source or a destination must be spread over at least⌈

χi

g

⌉
wavelengths, and hence there must be at least this many

ADMs at nodei. Now applying a similar lower bound on the
number of ADMs required at each node of the network, we
see that the total number of ADMs required in the network is
at least as large asL given by

L =
N−1∑

i=0

⌈
χi

g

⌉
(4)

whereN is the number of nodes in the SONET ring andg is
the grooming ratio. Thus (4) gives a lower bound on the total
number of ADMs required in the network.

As noted in Section IV-B, the class of circular arc graphs is
closed under induced subgraph. Also, as described in Section
III-A, graph G belongs to the class of circular arc graphs. So
the subgraphGi, induced on the graphG by the vertex setVi

is also a circular arc graph. And, although it is NP complete
to determine the chromatic number of a general circular arc
graph, as described next, the chromatic numberχi of graph
Gi can be easily calculated.

Figure 3 shows all the multicast traffic requests that pass
through network nodei. The solid arcs correspond to the
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requests that contain nodei as source or one of the destinations
and the dotted arcs represent the traffic requests that pass
through nodei but do not contain it as source or a destination.
Of these, letαi be the number of requests that containi as
an intermediate destination,βi be the number of requests that
contain i as the final destination andγi be the number of
requests that containi as the source. Clearly in the graphGi,
the traffic requests represented by the vertex setVi correspond
to the solid arcs and thereforeki = αi + βi + γi. Let us
look at graphĜi = (V̂i, Êi) instead of graphGi, where
Ĝi is the subgraph induced on graphGi (or equivalently on
contention graphG) by the vertex setV̂i representing the
requests that either have network nodei as source or the final
destination, i.e., we are removing theαi nodes corresponding
to the requests that contain network nodei as an intermediate
destination. Now grapĥGi is an interval graph [28] and we
know that for interval graphs the chromatic number is easily
computable and is equal to the maximumwidth of the graph
[29]. Here the width of an interval graph at some point is
defined as the number of arcs overlapping at that point. Also it
is clear that if vertexu ∈ Vi and vertexv ∈ Vi\ V̂i, thenu and
v can not have the same color (since requests corresponding
to verticesu andv share some fiber in the network). Therefore
the chromatic numberχi of graphGi is given by

χi = wi + αi (5)

wherewi is the maximum width of the interval grapĥGi and
αi = |Vi \ V̂i| is the number of traffic requests which contain
i as an intermediate destination.

During our simulations presented in Section VII, we observe
an interesting property of the lower bound presented above.
It seems that the lower bound given in (4) does not depend
on the number of nodes in the ring. To explain this, we try to
calculate the expected value of the lower bound for grooming
M multicast traffic requests on a SONET ring havingN nodes
and grooming ratiog. Let zi represent thesize of the i-
th multicast sessionRi. Here by the size of a session, we
mean the total number of source and destination nodes in
that session. Therefore, the size of sessionRi (represented
by vertexvi ∈ V ) is given byzi = |Svi |. For the purpose of
our simulations (and hence for this analysis), we assume that
the multicast session sizesz0, z1, . . . , zM−1 are independent
and identically distributed according to some cumulative dis-
tribution functionF having meanµF . We also assume that
the nodes (acting as the source or any destination) in any
multicast session, are selected randomly and uniformly from
all the nodes of the ring, i.e., for every multicast requestRi

(represented by vertexvi ∈ V ) having sizezi, the probability
that nodej ∈ Svi is equal tozi

N for everyj ∈ {0, . . . , N−1}.
Moreover, the selection of source and destination nodes of
different multicast sessions is assumed to be independent of
each other.

We first note that even though it is hard to estimate the
expected value of the lower bound, we can estimate the
expected value of the following function which approximates
the lower bound.

L̂ =
N−1∑

i=0

⌈
ki

g

⌉
(6)

Here ki is the number of multicast sessions that have node
i as either source or some destination. When graphsGi are
dense (which is the case in Section VII as well as the case
in most of the interesting examples),χi ≈ ki. Now it is easy
to observe that the expected value of the approximate lower
boundL̂ is given by

E(L̂) = E




N−1∑

i=0

⌈
ki

g

⌉
 =

N−1∑

i=0

E



⌈
ki

g

⌉
 = N · E




⌈
k

g

⌉

(7)

Here for the third equality we are using the fact that in any
multicast session, nodes are selected with equal probability,
and henceki’s are identically distributed. So we can drop the
subscripti and assume that the number of multicast requests
that havei as either source or some destination is distributed
according to random variablek.

To get an estimate ofE(L̂), we first observe that

E

k

g


 ≤ E




⌈
k

g

⌉
 ≤ E


k

g
+ 1


 (8)

Also, the number of multicast sessions selecting a particular
network node as source or one of the destinations can be
written as

k = x0 + x1 + · · ·+ xM−1 (9)

where random variablexi takes value1 if the i-th multicast
sessionRi selects the node under consideration as source or
one of the destinations and0 otherwise. Now we can evaluate
E(k) as

E(k) =
M−1∑

i=0

E(xi) =
M−1∑

i=0

E(E(xi|zi))

=
M−1∑

i=0

E

 zi

N


 =

1
N

M−1∑

i=0

E(zi) =
M

N
µF (10)

Here the third equality follows from the fact that givenzi

(the size of sessionRi), the random variablexi is distributed
according to a Bernoulli trial with probability of successp =
zi

N . Now (10) gives us

E

k

g


 =

MµF
Ng

(11)

and
E

k

g
+ 1


 =

MµF
Ng

+ 1 (12)

Using equations (7), (8), (11) and (12), we can easily bound
the required expectation as

MµF
g

≤ E(L̂) ≤ MµF
g

+ N (13)

Now if MµF/g À N (which is the case in Section VII
and is typically the case), then from (13), we note that the
expected value of our lower bound can be approximated by
MµF/g, which is independent of the number of nodes in the
ring. It should be clear that this is mainly because our lower
bound looks at each node of the ring in isolation. If we start
considering pairs (or triplets, etc.) of nodes at a time then our
bound will depend on the number of nodes in the ring. But it
is not trivial to extend the given bound and for the purpose of
our discussion the given bound suffices.
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B. Upper Bounds

Now we investigate some upper bounds on the number of
ADMs required in the network. We study the upper bounds
for the worst case and two very simple algorithms.

1) Worst Case:The maximum number of ADMs is re-
quired when we use a different wavelength for each multicast
request, i.e., we do no traffic grooming and wavelength reuse.
In this case, the number of ADMs requiredUwc, is given by

Uwc =
N−1∑

i=0

ki (14)

whereN is the number of nodes in the SONET ring andki is
the number of traffic requests having network nodei as source
or one of the destinations. Thus (14) gives an upper bound on
the number of ADMs required.

Trivially in (5), the value of maximum widthwi is lower
bounded by

wi ≥ max{βi, γi} (15)

Now using (5) and (15) we get

χi ≥ αi + max{βi, γi} (16)

We also know that

ki = αi + βi + γi (17)

Using (16) and (17), we can easily show that

ki = αi + βi + γi ≤ αi + 2 max{βi, γi}
≤ 2(αi + max{βi, γi}) ≤ 2χi (18)

Now (18) and (14) give

Uwc =
N−1∑

i=0

ki ≤
N−1∑

i=0

2χi ≤ 2g

N−1∑

i=0

⌈
χi

g

⌉
= 2gL (19)

This means that any sort of wavelength assignment (and
traffic grooming) solution is an approximation algorithm with
approximation ratio2g. An interesting observation is that in
case of no grooming (g = 1), any wavelength assignment will
be within twice the optimal as far as the number of ADMs
required in the network is concerned.

2) Algorithm A: Another interesting bound that we con-
sider is for the simple heuristic in which we randomly group
the traffic requests into clusters ofg requests each. We assume
that requests in a particular cluster are routed on the same
wavelength. This is clearly possible since we are providing a
separate subwavelength channel for each traffic request. Then
we assume that each network node that acts as a source or
destination for some multicast request is provided with an
ADM for all these wavelengths. Note that if network nodei
does not act as source or destination for any multicast request,
i.e., if i /∈ Sv for everyv ∈ V , then since no traffic is being
added or dropped ati, there is no need to equipi with ADM
on any wavelength. LetN ′ denote the number of nodes that
act as source or destination for at least one multicast request.
Clearly N ≥ N ′. Now the number of ADMs in the network
is given by

UAlgo−A = N ′
⌈

M

g

⌉
(20)

Let zavg be the average size of multicast sessions, i.e., let

N−1∑

i=0

ki = zavgM (21)

Now (18), (20) and (21) give us

UAlgo−A = N ′
⌈∑N−1

i=0 ki

gzavg

⌉
≤ N ′

⌈
2

∑N−1
i=0 χi

gzavg

⌉

≤ N ′
N−1∑

i=0

⌈
χi

g

⌉
= N ′L ≤ NL (22)

The second inequality holds because of the fact thatzavg ≥
2. This is true since every multicast session has at least one
source and one destination.

Note that if we further assume a large enough average
multicast session size, then we can show a better upper bound.
More specifically, we can show the following

UAlgo−A ≤ N ′
⌈

2
∑N−1

i=0 χi

gzavg

⌉
≤ N ′

zavg

⌈
2

∑N−1
i=0 χi

g
+ zavg

⌉

≤ 2N ′

zavg

⌈
N−1∑

i=0

χi

g

⌉
+ N ′ ≤ 2N ′

zavg

N−1∑

i=0

⌈
χi

g

⌉
+ N ′

≤
(

2N ′

zavg
+ 1

) N−1∑

i=0

⌈
χi

g

⌉
=

(
2N ′

zavg
+ 1

)
L

≤
(

2N

zavg
+ 1

)
L (23)

Here the last inequality is due to the fact that if nodei acts as
a source or a destination for at least one multicast request, then
the graphGi has at least one vertex and thereforeχi ≥ 1. Now
observing that there areN ′ such nodes, we get

∑N−1
i=0

⌈
χi

g

⌉
≥

N ′.
So the simple heuristic of routing anyg traffic requests

on the same wavelength is an approximation algorithm with
approximation ratioN . And if the average session sizezavg ≥
2N

N−1 , then, for the same heuristic, we can get a better
approximation ratio equal to1 + 2N

zavg
.

3) Algorithm B: Another simple heuristic is that we try to
use the minimum number of subwavelength channels for all
the traffic requests and then we randomly combineg subwave-
length channels into one wavelength. So now we may have
more thang requests in one wavelength. This is equivalent
to coloring the graphG described in Section III-B using
the minimum number of colors and then groupingg colors
(subwavelength channels) together to form one wavelength.
Let the chromatic number of graphG be χ. As mentioned in
Section III-B, G is a circular-arc graph and therefore it can
be colored by Karapetian’s algorithm [26] using at most

⌊
3
2χ

⌋
colors. Again, as forAlgorithm A, the maximum number of
ADMs required by this technique is when each node that acts
as a source or a destination for at least one multicast request,
is provided with an ADM for all the wavelengths. The number
of ADMs is given by

UAlgo−B = N ′
⌈⌊

3
2χ

⌋

g

⌉
(24)
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Now if all the sessions are multicast with size at least
zmin, then the minimum number of ADMs required for each
wavelength iszmin. Hence a lower bound (other than our
primary lower boundL given in (4)) on the number of ADMs
required in the network is

L2 = zmin

⌈
χ

g

⌉
(25)

Using equations (24) and (25), we see that

UAlgo−B = N ′
⌈⌊

3
2χ

⌋

g

⌉
≤ N ′

⌈
2χ

g

⌉
≤ 2N ′

⌈
χ

g

⌉

≤ 2N ′

zmin
L2 ≤ 2N

zmin
L2 (26)

So the approximation ratio of this simple algorithm is2N
zmin

.
We can arrive at a different (better in some cases) approx-

imation ratio by following a separate line of analysis. Let
χ

g
= 2n + δ + ε (27)

wheren is a non-negative integer,δ ∈ {0, 1} and0 ≤ ε < 1.
From (25) and (27), we get

L2 = zmin d2n + δ + εe = zmin(2n + δ + dεe) (28)

Again from (24) and (27), we get

UAlgo−B = N ′
⌈⌊

3
2χ

⌋

g

⌉
≤ N ′

⌈
3χ

2g

⌉

= N ′
⌈

3
2
(2n + δ + ε)

⌉

≤ N ′
(

3n + 3
⌈

δ + ε

2

⌉)
(29)

Now only the following two cases are possible.
• δ + ε = 0 ⇒ δ = ε = 0

In this case, from (28), the lower bound becomes

L2 = 2nzmin (30)

And from (29) and (30), we get

UAlgo−B ≤ 3nN ′ =
3N

2zmin
L2 (31)

• δ + ε > 0
In this case, from (28) we get

L2 = zmin(2n + δ + dεe) ≥ zmin(2n + 1) (32)

And from (29), we get

UAlgo−B ≤ N ′
(

3n + 3
⌈

δ + ε

2

⌉)
= N ′(3n + 3) (33)

where the second equality is based on the fact that since
δ ∈ {1, 0}, ε ∈ [0, 1) andδ + ε > 0, 0 < δ + ε < 2. Now
using equations (32) and (33), we get

UAlgo−B ≤ 3N ′

2
(2n + 1) +

3N ′

2

≤ 3N ′

2zmin
L2 +

3N ′

2

≤ 3
2

(
N ′

zmin
+ 1

)
L3

≤ 3
2

(
N

zmin
+ 1

)
L3 (34)

where L3 is another lower bound on the number of
required ADMs given by

L3 = max{L2, N
′} (35)

It should be clear thatL3 is a valid lower bound because
L2 is a lower bound and since we need at least one ADM
on all N ′ nodes that act as a source or a destination for
at least one multicast request,N ′ is also a valid lower
bound on the number of ADMs required in the network.

From equations (31) and (34), we observe that the algorithm
has an approximation ratio3(N+zmin)

2zmin
. Also note that this

approximation ratio is better than the previously computed
approximation ratio of 2N

zmin
wheneverzmin < N

3 .

VI. COMPLEXITY ANALYSIS

In this section we present the complexity analysis for our
graph based traffic grooming heuristic presented in Section
IV-B and the two simple schemes presented as upper bounds
for the grooming problem in Section V-B.

A. Algorithm A

Algorithm A described in Section V-B.2 starts by randomly
grouping the given traffic requests into clusters of sizeg each.
This clustering requiresO(M) steps and we get

⌈
M
g

⌉
clusters.

Let the clusters beC0, . . . , CdM
g e−1. All the traffic requests

in clusterCi are routed on wavelengthλi, therefore the set
of network nodes which should be equipped with ADM on
wavelengthλi is given by

Sλi =
⋃

v∈Ci

Sv (36)

There are
⌊

M
g

⌋
clusters containingg traffic requests and⌈

M
g

⌉
−

⌊
M
g

⌋
clusters containingM mod g traffic requests.

SinceSv ⊆ {0, . . . , N − 1} for every v ∈ V , the number of
steps required for evaluatingSλi according to (36) isNg if
clusterCi containsg requests andN(M mod g) if it contains
M mod g requests. So the total number of steps required for
determining the placement of ADMs at each network node on
all the wavelengths is

⌊
M

g

⌋
Ng +

(⌈
M

g

⌉
−

⌊
M

g

⌋)
N (M mod g)

=
⌊

M

g

⌋
Ng + N (M mod g) = NM (37)

Therefore the overall complexity of AlgorithmA is O(NM).

B. Algorithm B

Algorithm B described in Section V-B.2 first colors the
contention graphG defined in Section IV-B using Karapetian’s
algorithm [26]. This requiresO(M2) time. The total number
of colors used is upper-bounded bymax{χ,M} whereχ is
the chromatic number of graphG. The the colors are then
randomly split into groups of sizeg. Based on these grouping
the given traffic requests are partitioned into clusters such
that the cluster corresponding to a particular group of colors
contains all the traffic requests that were assigned colors from
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(a) Varying network size.
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(b) Varying grooming ratio.
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(c) Varying session size.
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(d) Varying number of sessions.

Fig. 4. ADMs required by Algorithms1, 2, A, B and lower boundL.

that group. This clustering can be done inO(M) steps. Let
there beK such clustersC0, . . . , CK−1. Let the number of
traffic requests in clusterCi be gi. All the traffic requests in
clusterCi are routed on wavelengthλi and the set of network
nodes which should be equipped with ADM on wavelengthλi

is given by (36). As argued above in the complexity analysis of
Algorithm A, the number of steps required for evaluatingSλi

is Ngi. So the total number of steps required for determining
the placement of ADMs at each network node on all the
wavelengths is

K−1∑

i=0

Ngi = N

K−1∑

i=0

gi = NM (38)

Therefore the overall complexity of AlgorithmB is O(NM +
M2).

C. Heuristic

Consider the graph based traffic grooming heuristic pre-
sented as Algorithm 1. As described in Section IV-B, we start

off by assigning a different wavelength to every traffic request.
In each iteration on the heuristic, we update the wavelength
assignment by first determining the best (as described in
Section IV-B) reducible wavelength pair and then assigning
all the traffic requests on the two wavelengths to a single
wavelength. We continue to update the wavelength assignment
iteratively till there are no more reducible wavelength pairs
left. The wavelength assignment after completingn steps of
the heuristic is maintained as graphH(n) = (Λ(n), L(n))
where the vertex set represents the set of wavelengths. For
each wavelengthλi ∈ Λ(n) we maintainSλi , the set of
network nodes which act as source or destination nodes
for any multicast session being groomed on wavelengthλi.
Also for every wavelength pairλi, λj ∈ Λ(n), we maintain
|Sλi

⋃
Sλj |, |Sλi

⋂
Sλj | and whether the wavelength pair is

reducible or not.

First we study the complexity of then + 1-st iteration in
Algorithm 1. Since in each iteration we reduce the number
of wavelengths by1, |Λ(n)| = |Λ(0)| − n = M − n. So the
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Fig. 5. Wavelengths per fiber required by Algorithms1, 2.

number of wavelength pairs to consider is(M−n)(M−n−1)
2 .

The number of steps required to determine the best reducible
wavelength pair is linear in the number of wavelength pairs.
After determining the best reducible wavelength pairλα, λβ ∈
Λ(n) we update graphH(n) to H(n + 1) with vertex set
Λ(n + 1) = (λ(n)

⋃{λαβ}) \ {λα, λβ} where all the traffic
requests previously groomed on wavelengthsλα and λβ are
now assigned on the new wavelengthλαβ . As explained in
Section IV-B, we need to computeSλαβ

= Sλα

⋃
Sλβ

and
for every other wavelengthλi ∈ Λ(n+1) we need to evaluate
|Sλαβ

⋃
Sλi |, |Sλαβ

⋂
Sλi | and whether the wavelength pair

λαβ , λi is reducible or not. SinceSλ ⊆ {0, . . . , N−1} for any
wavelengthλ, evaluatingSλαβ

, |Sλαβ

⋃
Sλi | and|Sλαβ

⋂
Sλi |

require O(N) steps. For any wavelengthλk, let Ck denote
the set of traffic requests that are assigned wavelengthλk. To
determine whether wavelength pairλαβ , λi is reducible or not,
we check if we can color graphG[Ci

⋃
Cαβ ], the contention

graph of all the traffic requests that are assigned wavelengths
λi or λαβ , using at mostg colors or not. We employ

Tucker’s algorithm [23] for coloring the circular arc graph
which requiresO(|Ci

⋃
Cαβ |2) time. Since|Ci

⋃
Cαβ | ≤ M ,

checking if wavelength pairλi, λαβ is reducible or not takes
O(M2) time. Therefore the number of steps required inn+1-
st iteration of the heuristic is(M − n − 2)O(N + M2). As
already explained after each iteration, the size of the vertex
set of the graph decreases by1, so there can be a maximum of
M − 1 iterations. Hence the iterations in the heuristic require
O(M2(N + M2)) steps.

Now we count the number of steps required to initialize
the graphH(0) in the first step of the heuristic. Note that
checking whether a wavelength pairλi, λj ∈ Λ(0) is reducible
or not requiresO(1) steps. This is because every wavelength
corresponds to just a single traffic request. Again, determining
|Sλi

⋃
Sλj | and |Sλi

⋂
Sλj | requireO(N) steps. Since there

are M(M−1)
2 wavelengths pairs, the construction of graph

H(0) requiresO(NM2) steps.

Therefore the overall complexity of Algorithm 1 is
O(M2(N + M2)).



SUPPLEMENT ON OPTICAL COMMUNICATIONS AND NETWORKING 13

VII. N UMERICAL RESULTS

Since presently there is no other heuristic for grooming
multicast traffic in unidirectional rings with which we can
compare our heuristic, we extend the unicast traffic grooming
algorithm presented in [1] to the multicast case. We do this
by simply starting with multicast sessions in place of unicast
sessions in the circle construction phase. More specifically,
we try to put as many multicast sessions on circles without
introducing gaps. In [1], the authors do this for unicast sessions
by assuming each unicast session to be aconnectionand then
combining two connections with common end points to form
complete circles. After constructing the maximum possible
circles in this way, they then applyAlgorithm IV:Construct
Circles - Non-Uniform Trafficto construct the rest of the
circles. Each circle here corresponds to a subwavelength
channel. After all the connections have been assigned to
some circle, the circles are groomed into wavelengths. In our
extension of this algorithm, we consider multicast sessions to
be the starting connections and construct the circles in exactly
the same way. After we have the circles, the circle grooming
heuristic is exactly the same as in [1]. We refer to our heuristic
asAlgorithm 1 and this extended heuristic asAlgorithm 2.

We evaluate the performance of both Algorithms1 and
2 in terms of the number of ADMs required. For a more
complete picture, we also compare the performance of both
the heuristics to our lower bound as given in equation (4).
Since the number of wavelengths required also contributes to
the network cost (albeit, not as much as the ADMs), we also
compare the wavelengths required by the two heuristics. For
the sake of completeness we also compare the two simple
multicast traffic grooming schemes presented as AlgorithmA
and AlgorithmB in Section V-B.

We identify the problem of grooming multicast traffic on
unidirectional rings by the five parameters:N , M , g, zmin and
zmax. Here the parametersN , M and g denote the number
of nodes in the ring, the number of multicast sessions and the
grooming ratio respectively. Parameterszmin andzmax denote
the minimum and the maximum possible size of the multicast
sessions. For the purpose of simulation, while generating a
multicast session, each node is given equal probability of being
selected as the source. The size of each multicast session is
selected uniformly fromzmin to zmax. After the source node
and the sizez of the multicast session are fixed, destination
nodes are selected such that every subset of sizez − 1 of the
remaining N − 1 nodes (since one node has already been
selected as the source) has equal probability of being the
destination set.

For simulation, we consider a nominal ring network having
10 nodes,80 multicast sessions, with each session size selected
uniformly between2 to 8 and having grooming ratio4. We
study the performance of both the heuristics by varying one
parameter of the problem at a time in this nominal network.
More specifically, we vary the grooming ratio from2 to 6,
the network size (number of nodes in the network) from8
to 16, the number of multicast sessions from60 to 100 and
the maximum size of multicast sessions from2 to 10. Figure
4 presents the simulation results comparing the number of
ADMs required by the various grooming schemes as well

as the number of ADMs specified by our lower boundL.
The simulation results comparing the wavelengths per fiber
required by Algorithm1 and 2 are presented in Figure 5.
Each point in the plots is generated by taking an average of
20 randomly selected grooming problem instances with the
required parameters.

We can see from the plots that, as measured by the number
of ADMs required, our Algorithm1 always outperforms
Algorithm 2. This is true even for unicast traffic (the case
for which Algorithm 2 was designed in [1]). We also note
that our Algorithm1 usually requires more wavelengths than
Algorithm 2. But the increase in the number of wavelengths
is never more than2, and is overshadowed by the savings in
the number of (more expensive) ADMs.

Form the plots we also observe that of the three grooming
schemes presented in this work, our graph based grooming
heuristic (Algorithm1) always outperforms the simple groom-
ing from Section V-B (AlgorithmsA and B). And among
the two simple schemes, AlgorithmB always outperforms
Algorithm A. We can justify this trend in the light of the com-
plexity analysis of the three schemes presented in Section VI.
Assuming that the number of traffic requests to be groomed
is much larger than the number of network nodes (which is
usually the case and is true for our simulations as well), we
observe that based on their time complexities, AlgorithmA
is the simplest, Algorithm1 is the hardest and AlgorithmB
lies somewhere in-between the two. Since we get what we
pay for, the relative performances of the three schemes is as
expected. Although not presented in the plots, the number of
wavelengths required by AlgorithmsA and B are also very
similar to that required by Algorithms1 and2.

Also from the plots, we can see that the lower boundL
given in (4) tracks the performance curves of the heuristics as
we vary the grooming ratio, the number of sessions or the size
of sessions. This suggests that the bound tracks the changes in
these parameters quite well. But we observe that this is not so
in the case of the size of network. This is consistent with our
discussion in Section V, and it is easy to verify that the value
of the lower bound (averaged over20 runs) closely matches
our estimate given in (8).

VIII. C ONCLUSION

In this paper we have studied the problem of grooming non-
uniform multicast traffic on a unidirectional SONET/WDM
ring. We consider two different costs, (i) number of wave-
lengths and (ii ) number of ADMs. We observe that minimizing
the number of wavelengths can be modeled as a standard arc-
graph coloring problem. We then give a graph based heuristic
for minimizing the number of ADMs. Based on extensive
simulations we observe that our heuristic performs better
than the multicast extension of the best known unicast traffic
grooming heuristic for rings given in [1]. We also develop a
lower bound for the problem and look at some interesting
relations between the lower bound and a couple of upper
bounds.
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