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Summary

Poison message failure is a mechanism that has been responsible for large-scale failures in both telecommunica-

tions and IP networks. We design a fault management framework that integrates passive diagnosis and active

diagnosis to identify the poison message and prevent network instability. Passive diagnosis uses real-time

inference and reasoning techniques to analyze network information and generates a probability distribution of

the poison message, and the probability distribution is used in active diagnosis for further failure identification. In

active diagnosis, message filtering is used to block suspect message types. Blocking messages affects network

performance and service. The tradeoff of message filtering is formulated as a Markov Decision Process (MDP).

The large size of the state space makes it impractical to use traditional techniques to solve the MDP. Con-

sequently, we use a combination of reinforcement learning and feature-based function approximation to obtain a

suboptimal policy. Extensive simulations demonstrate the effectiveness of passive diagnosis, and show that the

suboptimal policy performs significantly better than a well-known heuristic policy. Copyright# 2008 John Wiley

& Sons, Ltd.
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1. Introduction

There have been a number of incidents in which ‘bad

behavior’ propagated among network elements and

resulted in a significant degradation of network

throughput and performance. Labovitz et al., have

reported on Internet routing instabilities and related

network problems in References [1] and [2]. ATM

networks running routing protocols that were proprie-

tary forms of PNNI have caused major outages of

AT&T and MCI-WorldCom Frame Relay networks

[3,4]. Regional Bell Operating Company (RBOC)

Signaling System No. 7 of Common Channel Signal-

ing Network (CCSN) outages in 1990 and 1991
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caused prolonged disruptions in voice telephone net-

works [5]. The AT&T 4ESSTM switched voice tele-

phone network became unstable for around 6 hours

(with greater than a 50% call blocking for most of

that time) caused by propagating switching system

failures [6].

The above incidents were all the result of non-

malicious causes such as software bugs, protocol

deficiencies, and system design problems. An impor-

tant aspect of the causes of these network events

is that they are very unlikely to be discovered in

normal testing, due to either the code causing the

problem is in an obscure, rarely used branch of code;

or the trigger event drives a portion of the network into

conditions outside the normal parameter ranges. As a

result, these types of problems appear to be rare,

isolated events. The concern, however, is that there

can be many such undetected software bugs and

protocol deficiencies lurking in deployed systems,

and if these become known by a malicious party

they can be exploited to cause significant harm. We

already see a large number of Distributed Denial of

Service (DDoS) attacks that occur daily, and virus and

worm attacks that occur less frequently, but inflict

significant economic costs.

Previous efforts to address major network outages

have focused on areas such as software reliability,

disaster prevention and recovery, network topology

design, network engineering, and congestion control.

In relation to fault propagation, the main idea that has

previously been considered is software diversity (e.g.,

[7]). However, network providers have studied soft-

ware diversity and they have determined that this

solution is too costly and unmanageable. Furthermore,

software diversity does not address flaws in a stan-

dardized protocol. To the best of our knowledge, there

is no previous work that explores the idea of over-

laying a control capability on a network with ‘unreli-

able’ components to prevent the propagation of

failures. Virtually all of the previous work related to

this problem is directed at how to design systems and

protocols to be robust assuming complete knowledge

and control of the underlying protocols and systems.

A typical example is the design of system and network

congestion controls. There seems to be no previous

work on developing techniques for containing unde-

sirable network behavior under the assumption that

network elements and protocols are vulnerable due to

unknown flaws or malicious alterations.

Our approach is to identify generic propagation

mechanisms that can cause network instability, and

design control techniques to stabilize the network,

without knowing ahead of time what specific mechan-

isms are being used to drive the network into an

unstable state. There are several generic failure pro-

pagation mechanisms that can cause unstable net-

work. In this paper, we focus on one of these that

we refer to as the poison message failure propagation

mechanism. This is the propagation mechanism that

caused the AT&T 4ESSTM network to go unstable in

1990 [6]. Recently, it has been responsible for the

failure of a large number of routers in an ISP network.

Next, we describe the problem and its features.

1.1. The Poison Message Failure Problem

The poison message failure problem is stated as

follows: a trigger event causes a particular network

control or management message (the poison message)

to be sent to other network elements. Some or all of

the network elements have a software or protocol

‘bug’ that is activated on receipt of the poison mes-

sage. The activated ‘bug’ will cause the node to fail

with some probability. If the network control or

management is such that this message is persistently

passed among the network nodes, and if the node

failure probability is sufficiently high, then large-

scale instability can result. Several such incidents

have occurred in telecommunication and other net-

works, such as an AT&T telephone switching network

incident in 1990 [6]. In this case, the poison message

was an ordinary control message passed between

switches; there was nothing abnormal about the mes-

sage itself. It was a software defect in the nodes that

caused the message to have a ‘poison’ effect. We are

also aware of an incident in which malformed OSPF

packets functioned as poison messages and caused

failure of the routers in an entire routing area for an

Internet Service Provider.

1.2. The Problem Features

The poison message problem has several differences

from traditional network fault management problems.

Typical network fault management deals with loca-

lized failures [8,9], for example, there is something

wrong with a switch. What propagates is not the

failure itself but the consequences of the failure on

the data plane, for example, congestion builds up at

upstream nodes. Then multiple alarms are generated

that need to be correlated to find the root cause [10]. In

the poison message problem, the failure itself propa-

gates, and the propagation occurs through control or

management plane messages. It is also different from
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worms or viruses in that worms and viruses propagate

at the application layer.

A message type may have a characteristic pattern of

propagation. For example, OSPF Link State Adver-

tisements (LSA) messages use flooding so a poison

message carried by OSPF LSA messages is passed to

all neighbors. In contrast, RSVP Path messages follow

shortest paths so a poison message carried by RSVP is

passed to a sequence of routers along such a path.

Consequently, we expect pattern recognition techni-

ques to be useful in helping to infer the responsible

message type.

To study the poison message problem, we make the

following three assumptions:

(1) Centralized network management is available.

(2) Recent communication history (exchanged mes-

sages) of each node in a communication network

can be recorded.

(3) Because the probability of two message types

carrying poison messages at the same time is

very small, we assume there is only one message

type carrying the poison message when such

failure occurs.

There are several ways to record recently ex-

changed messages. One way is to let each node record

messages that were recently exchanged with its neigh-

bors. When a node fails, all its neighbors send the

recorded messages to a central manager. In our

experiments, each node stores a certain number (or

for a certain time period) of most recent control/

management messages exchanged with its neighbors.

Of course, there is a problem when multiple nodes fail

simultaneously. If a neighbor node B fails at the same

time as (or in a very short time after) a node A fails,

then the recorded message in node B cannot be

delivered to the central manager. In today’s high-

speed network, the transmission of a few control

messages (not potentially large amount of data pack-

ets) only takes a little time so the probability of having

the above event should be low. In case it happens, then

it means that the central manager only has partial

information about message exchanged at failed nodes.

The passive diagnosis (details given in Section 2) can

still be performed by using the partial information. Of

course the diagnosis may have less accuracy. In

Reference [9], Bouloutas already addressed the pro-

blem of doing finite state machine (FSM) analysis

based on partial information.

Our goal is to design a fault management frame-

work that can identify the poison message type, or at

least the protocol, carrying the poison message, and

block the propagation of the poison message until the

network is stabilized. We propose integrating passive

diagnosis and active diagnosis to identify and block

the poison message.

The contributions of this paper are: (1) we designed

a network fault management framework that can

effectively identify the poison message. (2) We pro-

posed multiple approaches for passive diagnosis to

deal with different networks. Each approach is suita-

ble for certain networks and these approaches can be

combined together. In particular, we show that pattern

classification using neural networks is an effective

technique. (3) We modeled active diagnosis as a

Markov Decision Process (MDP) and obtained a

good suboptimal policy using reinforcement learning

and function approximation techniques. The rest of

the paper is organized as follows. In Section 2, we

present passive diagnosis, three different approaches

in passive diagnosis, and the simulation results. We

describe active diagnosis in Section 3 and present

the experimental results in Section 4. Finally, we give

the conclusions in Section 5.

2. Passive Diagnosis

Passive diagnosis uses real-time inference and reason-

ing techniques to analyze network information and

generates a probability distribution of the poison

message. We propose three approaches for passive

diagnosis. Different approaches are suitable for dif-

ferent networks, and they can be combined together.

We briefly describe each approach below.

1. Finite state machine approach: this is a distributed

approach used at single failed node. All communica-

tion protocols can be modeled as FSM [9]. When a

node fails, the neighbor of the failed node will retrieve

stored messages that were exchanged with the failed

node. Messages are classified according to protocols.

Then the message sequence is used to match the FSM

model of the corresponding protocol. We can check

whether those messages match (are consistent with)

the FSM model, and we can also determine what

state a protocol was in immediately prior to failure.

If there are one or more mismatches between the

message sequence and the FSM model, that probably

means there was something wrong in the protocol. We

have reported the details of the FSM approach in

Reference [11].

2. Correlating message approach: event correlation

is an important technique in fault management.
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Recently exchanged messages are stored by neighbor

nodes. We analyze stored messages of multiple failed

nodes. Since multiple nodes are failed by the same

poison message, there must be some common features

in the stored messages. One can compare the stored

messages of those failed nodes. If for a protocol, there

are no common received messages among the failed

nodes, then we can rule out this protocol, that is, this

protocol is not responsible for the poison message. On

the other hand, if many failed nodes have the same

final message in one protocol, we can use Bayes’ Rule

to calculate the probability of the final message being

the poison one. The details of the correlating message

approach are given in Subsection 2.2.

3. Utilizing node failure pattern: different message

types have different failure propagation patterns. One

way to exploit the node failure pattern is to use a

neural network classifier. The neural network is

trained via simulation. A simulation testbed is set up

for a real communication network. The testbed has the

same topology and protocol configuration as the real

network. Every message type used in the network is

simulated as the poison message, and the simulation is

run for the node failure probability being different

values. We record the node failure patterns for each

poison message type, and these data are used to train

the neural network. After training, the neural network

is used for poison message identification in the real

communication network. The details of using neural

network classifiers are reported in Subsection 3.3.

The output of passive diagnosis is a probability

distribution of each suspect message type being the

poison message.

2.1. Examples of Poison Message Failure

We have mentioned the poison message failure in-

cidents of AT&T and the ISP in Section 1. The poison

message failures could happen in many protocols and

scenarios. In our OPNET [12] simulation testbed, we

have constructed three scenarios where Label Distri-

bution Protocol (LDP), OSPF, and BGP are the

responsible protocols carrying the poison messages.

The first example is the LDP case. LDP is a core

protocol in MPLS, and it defines the mechanism for

distributing label bindings among label switching

routers. In the LDP case, for some reason (e.g., soft-

ware bug) a LDP Label Request message can cause a

receiving node to fail with some probability. Consider

in a MPLS network, several dynamic Label Switched

Paths (LSPs) are set up. The term ‘dynamic path’

means that the path from ingress router to egress

router is not fixed, but is found dynamically by a

routing protocol. If any link or router along the path

fails, the ingress router will try to find another path to

the egress router.

Suppose an ingress router R0 wants to set up an LSP

to an egress router Re. First, R0 sends a Label Request

message to next router R1. Because of the poison

message, router R1 fails with some probability P. If R1

does not fail, then it sends the Label Request message

to the next router R2, and with some probability R2

will fail, and so on. If any router along the LSP fails,

R0 will try to find another path to Re, and this may

cause some other nodes to fail. After a failed router

reboots, it may be failed again by the poison message.

If there are many dynamic LSPs in the network, and if

the node failure probability P is large enough, then a

lot of routers fail and this can cause sustained network

instability.

In the OSPF example, the poison message is a LSA

message. When a router receives the poison LSA

message, it fails with some probability. If it fails, later

its neighbors will find the failure and send out LSA

messages to other routers to update the network

topology. This may cause some other routers to fail,

leading to a chain reaction of failures. After a failed

router reboots, it may receive the poison LSA mes-

sages again, and its failure may be repeated. This also

causes an unstable network.

The third example involves BGP. The poison mes-

sage is a normal BGP update message. In the BGP

case, the failure propagation is similar to the OSPF

case. A router fails because of a BGP poison message;

later other BGP speakers will discover the failure and

send out update messages. That could cause other

BGP speakers to fail leading to failure propagation

among BGP speakers throughout the network.

In order to validate passive diagnosis, we have

implemented an OPNET testbed (Figure 1) to simu-

late an MPLS network in which poison messages can

be carried by BGP, LDP, or OSPF. Different prob-

abilities of a poison message failing a router (i.e., node

failure probabilities) have been tested. The testbed has

14 routers of which 5 are Label Edge Routers and

9 are (non-edge) Label Switching Routers. We use

numbers 1, 2, . . . , 14 to denote these routers in the

simulation. We describe the details of the simulations

below.

2.2. The Correlating Message Approach

We designed BGP simulation to validate the correlat-

ing message approach. As mentioned in Section 1, one
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possibility of the poison message failure is that the

final message of a protocol is the poison message.

That is, there are no more messages exchanged in

the protocol between the time the node received the

poison message and when it failed. If the node fails

shortly after receiving the poison message, this is

likely to be the case. However, just because multiple

failed nodes have the same final message of a parti-

cular protocol does not guarantee that this is the

poison message type. For certain protocols, a large

proportion of the exchanged messages may be of a

particular type. Consequently, when a node fails it is

likely that this message type will be the final one

observed in that protocol prior to node failure even

if it is not the cause of the node failure. We address

this issue by using Bayes’ Rule to compute the

posterior probability of a message being poison

given that several nodes have the same type of final

message.

First, we need the prior distribution of the final

messages. To obtain the prior distribution, we run

simulations where the poison message type is sampled

from a uniform distribution and we record the relative

frequency of each message type being the final mes-

sage in the protocol. This relative frequency gives

prior probability of being the final message.

In the BGP scenarios, the poison message is a

normal BGP message. For each simulation, the poison

message is either an update message, keep alive

message, or open message. Different node failure

probabilities have been tested. Results from a typical

simulation run with BGP keep alive message being

the poison message are given in Table I. The data in

the last three rows are the final messages in each

protocol. We use number (1, 2, . . . ) to denote message

types in all tables. The notations of message types

are: BGP: open¼ 1, update¼ 2, keepalive¼ 3; OSPF:

hello¼ 1, request¼ 2, update¼ 4, ack¼ 5; LDP:

Fig. 1. The topology of the OPNET testbed.

Table I. BGP simulation data.

Failed nodes 12 7 4 11 5 9 6 13 14 3

Failure time (seconds) 137.0 137.01 137.02 137.03 200.1 200.2 200.3 242.1 242.1 242.2
BGP 3 3 3 2 3 3 3 3 3 3
LDP No No No No 6 No No No No No
OSPF 1 1 4 1 1 1 4 1 1 1
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init¼ 2, keepalive¼ 3, mapping¼ 4, request¼ 5,

hello¼ 6, release¼ 7.

For each node failure, there is a small random delay

between its receipt of the poison message and failure.

Because of the small random delay, not all failed nodes

have the same final message in BGP. For example, when

node 11 failed the first time, the final message in BGP is

an update message rather than keep alive message.

However, there is a high probability that the final

message is the same as the poison message.

2.2.1. Calculating posterior probability

From Table I, we observe that many failed nodes do

not have LDP messages, so we can rule out LDP for

sure, that is, LDP is not the protocol carrying the

poison message. Now we only need to consider BGP

and OSPF. Most of the failed nodes have the same

BGP final messages—BGP keep alive message. Also

most final messages in OSPF are hello messages. We

use Bayes’ Rule to compute the posterior probability

given the above final messages.

p(keep) is used to denote the prior probability of

{keep alive message is the final message in a failed

node}. When the poison message failure happens, a

node may fail immediately or in a short time after

receiving a poison message. If a node fails immedi-

ately, then the poison message is the final message in

the protocol. If a node fails with some delay, then any

message could be the final message. Based on the

above fact and for the simplicity of computation, we

assume that the distribution of final messages at

different nodes is independent and identical. Then,

we can use the multinomial distribution to get the

probability of N nodes having certain final message

distribution. Recall that a multinomial distribution has

the following probability mass function (pmf):

Pðr1; r2; � � � ; rnÞ ¼ k � pr11 pr22 � � � prnn , where rj is the

number of occurrences of outcome type j, pj is

the probability that an individual outcome takes the

value j, and
P

pj ¼ 1. The multinomial coefficient

k ¼ N!=ðr1!r2! � � � rn!Þ, and N ¼ r1 þ r2 þ � � � þ rn.

Considering node failure time in Table I, we can

regard the four nodes—nodes 12, 7, 4, and 11 as the first

batch of failed nodes. Applying the multinomial dis-

tribution to those four nodes in BGP (N¼ 4), we

have,

Pðkeep; keep; keep; updateÞ
¼ 4!=ð3!1!Þ � pðkeepÞ3 � pðupdateÞ
� Pa

ð1Þ

where p(keep) and p(update) are the prior probabil-

ities that we obtained from simulations. We use data

from other simulations when the BGP keep alive

message is the poison message to compute the follow-

ing conditional probabilities:

P(keep alive message is the final message | BGP keep

alive message is poison) � Pb1.

P(update message is the final message |, BGP keep

alive message is poison) � Pb2

Next, we want to obtain the probability

Pðkeep; keep; keep; updatejBGP keep alive message

is poison messageÞ � Pb

ð2Þ

Here, we make a simplifying assumption: given

BGP keep alive message is poison, the distribution of

final messages at different nodes is independent.

Then, we can calculate Pb by the multinomial dis-

tribution and Pb1;Pb2.

Next, consider the prior probability for each mes-

sage type of being the poison message. Since we have

no prior knowledge which message is the poison one,

we use a uniform distribution over all message types

for all protocols. That is, the prior probability is

PðBGP keep alive message is poisonÞ
¼ PðOSPF hello message is poisonÞ ¼ � � � � @

ð3Þ

Then by Bayes’ Rule, we have

PðBGP keep alive message is poison j keep; keep;
keep; updateÞ � Pðkeep; keep; keep; updateÞ
¼ Pðkeep; keep; keep; update jBGP
keep alive message is poisonÞ
� PðBGP keep alive is poisonÞ

Combining Equations (1), (2), (3), we have

P1 � PðBGP keep alive message is poison j
keep; keep; keep; updateÞ ¼ @ � Pb=Pa

ð4Þ

Similarly, we can obtain the posterior probability

for other message types. Since we assume there is

only one kind of poison message, we have
P

i Pi ¼ 1.

Using the above procedure, we calculated the poster-
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ior probabilities for each suspect message type. The

results show that when BGP keep alive message is the

poison message, data from only four failed nodes can

generate a good probability distribution about the

poison message (i.e., the actual poison message type

has a high probability), but in other cases one needs to

collect more information (i.e., wait for more failed

nodes) in order to obtain a good probability distribu-

tion, for example, when BGP update message is

poison. We also ran simulations where the poison

message is BGP open message or update message.

After similar calculation, we have the following

results listed in Table II.

In Table II, row 1 is the identity of the poison

message in each simulation. Row 2 is the number of

failed nodes used in calculation, and data in rows 3

through 7 are the posterior probabilities of different

message types. We can see that the BGP open mes-

sage has a very high posterior probability (0.987)

when open message is the poison one. This is because

the prior probability of having an open message as the

final message is very small (0.34%). The posterior

probability also depends on how many failed nodes

are included in the calculation. Column 3 indicates

that when BGP update message is the poison message

and only five failed nodes are considered, the prob-

ability of OSPF hello message being poison is very

close to that of BGP update message, so at this point it

is not clear which message is the poison one. If we

wait for more nodes to fail, then more information will

be collected and used to calculate the posterior prob-

ability. Column 4 shows that when data from 10 failed

nodes are used, the probability of BGP update mes-

sage is much larger than that of OSPF hello and other

message types.

2.2.2. LDP and OSPF simulations

We also implemented and tested LDP and OSPF

simulations, and we have similar results from these

simulations. LDP simulation is also used to verify the

FSM method. We implemented a FSM error in the

LDP simulation, and the FSM error can be found by

matching the message sequence with LDP FSM

model. Even if we do not use the FSM information

and just use the final message distribution information

as in Subsection 2.2.1, we can still find out that LDP is

the responsible protocol. The details of the FSM

approach can be found in Reference [11]. Our OPNET

simulations demonstrate that the correlating message

approach and FSM approach are effective tools to

identify poison message. In the next subsection, we

discuss how to use a neural network to identify poison

message.

2.3. The Neural Network Approach

In this subsection, we describe how to use neural

networks to identify the poison message based on

node failure pattern, that is, the sequence of node

failures. The neural network approach combines off-

line learning and online inference techniques. We use

the Neural Network Toolbox in MATLAB to design,

implement, and simulate neural networks. We imple-

ment two kinds of neural networks in our simulation:

(1) feedforward backpropagation; and (2) radial basis.

2.3.1. Neural network structure and training

We have implemented three feedforward backpropa-

gation neural networks and one radial basis neural

network. They have similar structure. All of them

have three layers.

(1) Input layer with 28 inputs:

There are 14 nodes in the communication net-

work. We use a 14-element vector to denote the

node status at time k: Sk ¼ ½s1k ; s2k ; � � � ; s14k �, where k
is the discrete time step, and smk ¼ 0 or 1 (0 means

this node is normal, and 1 means this node is

failed). The 28 inputs represent the status of

14 nodes at two consecutive time steps (k� 1 and

k)� Sk� 1 and Sk.

(2) Hidden layer:

In the middle of the three layers is the hidden

layer. There is a transfer function in the hidden

layer. Many transfer functions are implemented in

MATLAB. In our simulation, we use three kinds of

transfer functions for the feedforward backpropa-

gation neural networks:

a. tansig—Hyperbolic tangent sigmoid transfer

function.

Table II. The posterior probability in BGP simulation.

Poison Message BGP open BGP update BGP update

Number of failed nodes 4 5 10
BGP open 0.987 0.000 0.000
BGP keep alive 1:1� 10�10 0.002 0.008
BGP update 0.012 0.497 0.577
OSPF hello 0.001 0.478 0.392
OSPF update 8:3� 10�8 0.023 0.030
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b. purelin—Linear transfer function.

c. logsig—Log sigmoid transfer function.

(3) Output layer with 12 outputs:

The output is the probability distribution vector

of the poison message. Twelve outputs represent 12

suspect message types in the OPNET testbed. Each

output is the probability of the corresponding mes-

sage being the poison one. The structure of such a

neural network is given in Figure 2.

From the OPNET simulations, we record the

node status vector Sk at time k, for k¼ 1, 2, . . . ,
K. Then, we use these data to train the neural

networks. The input of the neural networks is a

28-element vector representing Sk�1 and Sk. We use

100 sets of such input data to train the neural

networks. The target of the training (i.e., the output

during training) is a 12-element vector representing

the probability distribution vector of the poison

message. Since we know what the poison message

is during simulations, we know the target vector.

For example, when the 4th message is the poison

one, the target vector is [000100000000]. We set the

training goal to be: error < 10�10. The training

epoch number is set as 50. One epoch means that

the training data are used once. In our simulations,

all neural networks meet the training goal.

2.3.2. Main test results

After training the neural networks, we generate new

data to test them. In our simulation, we use 17 sets of

28-element vectors as input to test the four different

neural networks. The test results are very good. All of

the neural networks can output a good probability

distribution of the poison message for an average of

14 out of the 17 input data. Table III lists four sets

of test results, where each set of the result is the output

of the four neural networks when a particular message

serves as the poison message.

In Table III, ‘NN’ means neural networks. In the 1st

row, NN 1�4 represent the four neural networks,

where 1, 2, and 3 represent three feedforward back-

propagation neural networks with transfer function

being: ‘tansig,’ ‘purelin’ in 1, ‘tansig,’ ‘tansig’ in 2,

and ‘tansig,’ ‘logsig’ in 3, and NN 4 represents the

radial basis neural network.

The original outputs of the neural networks include

both positive and negative numbers. We call the out-

puts the ‘distribution scores.’ The probability distribu-

tion of the poison message is a linear transformation

and normalization from the distribution scores, that is,

y¼ a(xþ b), where x is the distribution score and y is

Fig. 2. The structure of a neural network.

Table III. The outputs of neural networks.

NN 1 NN 2 NN 3 NN 4

Poison message # 1 0.0841 0.1953 0.9992 0.8212
0.1235 0.1273 0 0.1127
0.1146 0 0 0.0078
0.0427 0.0191 0.0006 0.0322
0 0.1035 0.0002 0.0262
0.0892 0.0794 0 0
0.0898 0.0870 0 0
0.1331 0.0780 0 0
0.1269 0.0805 0 0
0.0446 0.0844 0 0
0.1143 0.0743 0 0
0.0373 0.0711 0 0

Poison message # 2 0.0140 0.1302 0 0.0796
0.1791 0.1925 0.0067 0.3986
0.1148 0.0656 0 0.1599
0 0 0 0.0032
0.1514 0.1919 0.9933 0.3586
0.0937 0.0471 0 0
0.1149 0.0793 0 0
0.1237 0.0375 0 0
0.1242 0.0844 0 0
0.0022 0.0519 0 0
0.0499 0.0488 0 0
0.0320 0.0708 0 0

Poison message # 3 0.0348 0.1247 0.0061 0.0475
0 0 0 0.0298
0.1677 0.1290 0.7421 0.6973
0.0413 0.1227 0.0000 0.0010
0.1128 0.1281 0.2518 0.2244
0.0745 0.0496 0 0
0.0515 0.0876 0 0
0.0984 0.0373 0 0
0.0919 0.1057 0 0
0.1172 0.0464 0 0
0.1782 0.0646 0 0
0.0317 0.1043 0 0

Poison message # 4 0.0003 0.0885 0 0.0096
0.0132 0 0 0.0032
0.3187 0.0711 0 0.0032
0.0777 0.1551 0.9999 0.9735
0.0388 0.1549 0.0001 0.0105
0.1162 0.0735 0 0
0.1164 0.0819 0 0
0.1452 0.0731 0 0
0.0738 0.0812 0 0
0.0653 0.0785 0 0
0.0345 0.0676 0 0
0 0.0746 0 0
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the probability distribution, and a and b are para-

meters. During the neural network training, the output

of non-poison message is set to zero, thus we set the

transformation of the smallest (negative) distribution

score in the output vector to be zero. That is, set b to

be �x0 where x0 is the smallest distribution score,

then a can be determined using
P

y ¼ 1. The data in

Table III are the probability distribution after trans-

formation.

In Table III, the bold numbers are the probabilities

of the actual poison message. An italicized number

means that the neural network assigns the largest

probability to a wrong message type (not the actual

poison message). From Table III, we observe that:

poison messages # 1, 3, and 4 are correctly diagnosed

by neural networks 2, 3, 4 but misdiagnosed by 1.

Poison message # 2 is correctly diagnosed by neural

networks 1, 2, 4 but misdiagnosed by 3. Table III

shows that for most tests, the neural networks can

provide a good probability distribution about the

poison message, that is, assigning the largest prob-

ability to the actual poison message. Comparing all

the test results, we find that the radial basis neural

network performs the best. Also, we find that different

neural networks fail for different cases. This suggests

that better results may be obtained by combining the

outputs of two (or more) neural networks.

2.3.3. Serial test

In the previous tests, we only use node status at two

time steps Sk�1 and Sk as input to neural networks.

Another way to utilize neural networks is to input a

series of node status, for example, S1; S2; � � � ; Sk�1,

and Sk. That is, we want to input more information to a

neural network in the hope of getting better results.

In particular, we carried out the serial tests for the

data sets that the neural network failed to correctly

diagnose with the original input. The results of the

serial tests are encouraging. The neural network can

gradually identify the poison message for about

60�70% of these data sets. It means that the output

gradually changes from a bad probability distribution

to a good probability distribution about the actual

poison message. One example of the serial test is

presented in Table IV. In this example, the neural

network is a feedforward backpropagation neural

network. For each test, we input all the node status

up to the current time step. In Table IV, the 1st column

is the index of the 12 message types. Columns 2

through 7 are the probability distributions for different

inputs. In this test, message # 3 is the poison message.

From Table IV, we observe that at the beginning,

the neural network assigns message No. 1 the largest

probability, which means that it does not find the

poison message. Starting from S5, the neural

network assigns the largest probability to the poison

message—message # 3. The neural network consis-

tently finds the poison message in the later tests. The

results show that the outputs of the neural network

stabilized after time step 5. We also conducted serial

tests on the radial basis neural network and got similar

results.

Both the main tests and the serial tests show that

neural network is an effective tool for identifying

the poison message. Next, we discuss active diagnosis

where active actions are taken to facilitate the

diagnosis.

3. Active Diagnosis

From the passive diagnosis, we have a probability

distribution over the possible poison message types. In

active diagnosis, message filtering is used to block

suspect message types or protocols. Message filtering

can be a valuable tool in helping to identify the culprit

message type. For example, if a single message type is

blocked and the failure propagation stops, this pro-

vides strong evidence that the blocked message type is

the poison message. On the other hand, if the propa-

gation continues, that message type can be ruled out.

Message filtering is implemented at each node. When

the central manager decides to filter out a certain

message typeM, it broadcasts the decision to all nodes

in the network, and then each node will filter (block)

message M, that is, each node discards the message

type without processing it.

Table IV. Results from serial test.

S1; S2 S1 � S3 S1 � S4 S1 � S5 S1 � S6 S1 � S7

1 0.1296 0.0633 0.1558 0.0339 0.1231 0.0811
2 0 0.0056 0.1032 0 0 0.1191
3 0.0743 0.1267 0.1101 0.1635 0.1726 0.1461
4 0.1231 0.1942 0.0725 0.0403 0.1205 0.0412
5 0.1258 0.1217 0.1228 0.1100 0.1221 0
6 0.0816 0.0888 0.0937 0.0727 0.0570 0.0860
7 0.0975 0.1145 0.0774 0.0502 0.0664 0.0866
8 0.0569 0.0185 0.0398 0.0960 0.0499 0.1283
9 0.0983 0.0491 0 0.0896 0.0822 0.1224
10 0.0642 0.1107 0.1337 0.1143 0.0473 0.0431
11 0.0652 0 0.0142 0.0961 0.0684 0.1102
12 0.0835 0.1070 0.0769 0.1333 0.0906 0.0359
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In addition to its use as a diagnostic tool, filtering

offers the possibility of interrupting failure propaga-

tion while the poison message type is being identified.

For example, all suspect message types can be initi-

ally blocked to stop the failure propagation. Then

message types can be turned on one-by-one until

propagation resumes. While this approach may be

attractive in preventing additional node failures during

the diagnostic process, disabling a large number of

control messages may result in unacceptable degrada-

tion of network performance. Consequently, the deci-

sion making for message filtering must take into

account tradeoffs involving the time to complete

diagnosis, the degradation of network performance

due to poison message propagation for each of the

suspect message types, and the cost to network per-

formance of disabling each of those message types.

Each decision on message blocking leads to further

observations, which may call for changing the mes-

sages being blocked. This suggests that policies for

dynamic filter configuration may be obtained by

formulating and solving a sequential decision problem

[13,14]. We discuss the sequential decision problem in

Subsection 3.1, and we formulate it as a MDP in

Subsection 3.2.

3.1. The Sequential Decision Problem

The sequential decision problem of message filtering

is described below:

� At each step, the state consists of the recent history

of node failures and a probability distribution

vector with one component for each suspect mes-

sage type.

� Based on the current state, a decision (action) is

made as which message types to block.

� When new node failures are observed, the state is

updated based on the current state, action, and new

observation.

� Actions are chosen according to a policy that is

computed off-line based on optimizing an objective

function taking into account the following

factors:

� degree to which each action will help in isolating

the responsible message type,

� urgency of diagnosis under each potential mes-

sage type, for example, if a suspect protocol

sends its messages to a large number of nodes

via flooding, the risk of network instability

would be particularly great if the messages are

poison, and this risk provides additional impetus

for filtering such a message type,

� impact of blocking on network performance. A

critical protocol or message type should be

blocked only if there is a compelling need to

do so.

There are three possible outcomes when message

filtering is deployed:

(1) If message filtering is used and the propagation is

stopped within a certain time, then either the

poison message type is found (if only one mes-

sage type is blocked) or the message set that

includes the poison message) is known (if two

or more types are blocked).

(2) If message filtering is used but the propagation

is not stopped within a certain time, then the

responsible message type is not found. The fil-

tered message types are removed from the

possible suspect set. New information (e.g.,

new node failures) is collected and used to update

the probability distribution and reconfigure the

filters.

(3) If the current action is not to block any message

type, then we simply take another observation.

Some active nodes may fail as the poison message

propagates in the network, and the messages ex-

changed with these failed nodes can be retrieved.

This information is used to update the probability

vector. Based on the updated state, a new decision

is made and the filters are reconfigured.

We model the above sequential decision problem as

an MDP. The details are given below.

3.2. The Markov Decision Problem

We define the MDP as below: there are N control

message types in the network, which are indexed as

[1, 2, . . . , N]. One of the types is faulty. We want to

find an optimal policy to identify the faulty message

type and minimize the expected overall costs.

The initial state of the MDP is a probability vector

P0 (from passive diagnosis) whose components give

the probability for each message type being poison,

and current node status. We assume a node will either

fail in a short time after it receives a poison message

or not fail by this poison message. That is, we exclude

the possibility that a node becomes ‘infected’ by a

poison message but fails much later. Based on this

assumption, a node status can be only one of two
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states (normal or failed), which means the node status

can be fully observed.

We formulate the problem as a stochastic shortest

path problem [15]. The horizon is finite, but its length

is random and may be affected by the policy being

used. There are cost-free termination states. The

termination states are the states with one of the

probabilities larger than (1� "), where " is a given

threshold close to 0, and all other probabilities are

close to 0, which means that the poison message type

is found with a desired confidence level (i.e., 1� ").
The terminal cost is Jt ¼ 0, since the poison message

type is found.

The objective is to find a stationary policy � that

minimizes an expected total cost. The total cost (or the

objective function) is given in Subsection 3.2.2. A

policy is a mapping that tells one which action to take

for a given state. Stationary policy means that the

mapping does not change over time. We formulate the

MDP as follows.

3.2.1. The state space of the MDP

First, we introduce the notations. In the following, k

is the discrete time index. A vector is used to

denote the status of each node in the network:

Sk ¼ ½s1k ; s2k ; � � � ; sMk �T , where M is the total number

of nodes in the network, and smk ¼ 0 or 1 (0 means

normal; and 1 means failed). Let dk be the random

variable representing the identity of the poison mes-

sage type. dk ¼ jmeans the poison message type is j at

time k, where j¼ 1, . . . , N, and N is the total number

of message types used in the network. Since the

poison message type does not change over time, we

have: Pðdkþ1 ¼ j j dk ¼ iÞ ¼ 1, only if j¼ i; other-

wise, Pðdkþ1 ¼ j j dk ¼ iÞ ¼ 0 ð�Þ.
Define the information vector up to time k as

Ik ¼ ðZ0; � � � ; Zk;U0; � � � ;Uk�1Þ, where Uk, Zk are the

action and observation at time k, respectively. Zk is the

set of newly failed nodes at time k. Possible actions

(controls) Uk at time step k are: (1) turning off one

message type; (2) turning off multiple message types;

(3) do nothing. Note: the actions may also include

some tests that have less cost than turning off a

message type. However, we do not consider those

tests in this paper.

Pk ¼ Pðdk j IkÞ is the conditional probability vector

of the poison message. Pk ¼ ½p1k ; p2k ; � � � pNk �T , where pjk
is the conditional probability of message type j being

the poison one given the observation history up to

time k, that is, p
j
k ¼ Pðdk ¼ j j IkÞ. Pk is a sufficient

statistic that contains all information (except node

status information) embedded in the history process

for control [15].

We make a simplifying assumption that the order of

failed nodes does not matter in determining which

nodes will fail at next time step. We choose the system

state as ½Sk; dk�, and the action is given above, then it is
a Partially Observed Markov Decision Process

(POMDP), since part of the state dk (the identity of

the poison message type) is not observable. Instead,

we reformulate the problem as a completely observed

MDP by using the sufficient statistic Pk [15]. This

formulation is given below:

State: The system state is Xk ¼ ½Sk;Pk�.
Action: Uk ¼ ½u1k ; u2k ; � � � uNk �T . If message type j is

turned off at time k, then u
j
k ¼ 1; otherwise u

j
k ¼ 0.

3.2.2. The cost function

There are three kinds of costs:

(1) There may be a cost when message type j is turned

off—g
j
1. If the message type turned off is the

poison one, then there is no penalty and the cost is

zero, otherwise the cost is g
j
1.

(2) There is a cost when a node i is failed—gi2. This

cost may be different for different nodes. We

assume that the total cost is additive over the

failed nodes. It would be more realistic, but

computationally more difficult, to allow the cost

depend on the set of failed nodes. We do, how-

ever, take into account whether the set of failed

nodes results in a partition of the network.

(3) There is a cost when the network is partitioned by

the failed nodes—denoted the cost as g3.

Thus, the cost function at each time step k is

gðXk;UkÞ ¼ gðSk;Pk;UkÞ
¼ f1ðPk;UkÞ þ f2ðSkÞ þ f3ðSkÞ

where f1 is the cost of blocking one or more message

types, f2 is the cost of node failures, and f3 is the

cost of network partition. Define Nk ¼ fj j ujk ¼
1; 1 	 j 	 Ng as the index set of all the message

types being turned off at time k. A simplified cost

function is given below:

gðXk;UkÞ¼
X
j2Nk

ð1� p
j
kÞ � g

j
1 þ

XM
i¼1

sik � gi2 þ g3 � Lk

where Lk ¼ 1 if the network is partitioned; otherwise

Lk ¼ 0. Note that sik ¼ 1 means node i is failed at time

k. The cost of filtering a particular message type j (i.e.,

g
j
1) is weighted by (1� p

j
k), which is the current

DESIGNING FAULT TOLERANT NETWORKS 171

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. 2008; 1:161–177

DOI:10.1002/sec



conditional probability that message type j is not the

poison one.

3.2.3. The objective function

We want to find a stationary policy � that minimizes

the following expected total cost (objective function):

J�ðX0Þ ¼ lim
N!1

E
XN�1

k¼0

gkðXk;�ðXkÞÞ
( )

:

This is the expected cost from initial state X0 to a

terminal state, that is, a state in which the poison

message type has been identified with the required

degree of confidence.

3.2.4. The state transition probability

Given state Xk and action Uk, we want to know the

state transition probability to reach next state

Xkþ1 : PðXkþ1 jXk;UkÞ ¼ PðSkþ1;Pkþ1 j Sk;Pk;UkÞ.
The state Xk has two parts Sk and Pk. We derive the

update of each part below.

Update of Sk. Assume there is no reboot of failed

nodes during the short period of active diagnosis. The

update of Sk is given below:

PðSkþ1jSk;Pk;UkÞ
¼ PðSkþ1jSk; Ik;UkÞ ðPk is sufficient statistic of IkÞ
¼

X
j

PðSkþ1jSk;Uk; dk ¼ jÞ � Pðdk ¼ j j IkÞ

¼
X
j

PðSkþ1jSk;Uk; dk ¼ jÞ � p
j
k

Note: PðSkþ1 j Sk;Uk; dk ¼ jÞ ¼� Pkþ1;j can be deter-

mined from simulations and online estimation. The

details are given in the sequel.

Update of Pk. For each message type j, where

j¼ 1, . . . , N, we have,

where @2¼ 1=PðSkþ1 j Ik;UkÞ is a normalization con-

stant independent of j. Thus, we have

p
j
kþ1 ¼ @2 � p

j
k � PðSkþ1 j Ik;Uk; dkþ1 ¼ jÞ

Note: PðSkþ1 j Ik;Uk; dkþ1 ¼ jÞ can be approximately

determined from simulations.

Determine the Probability Pkþ1;j. Recall that

PðSkþ1 j Sk;Uk; dk ¼ jÞ ¼� Pkþ1;j, that is, the probabil-

ity of node status being Skþ1 at time kþ 1, given the

poison message type is j, node status vector is Sk and

control is Uk at time k.

We define: p1 ¼ Prob: (node i receives the poison

message j | poison message is j, node status vector is

Sk and control is Uk), and p2 ¼ Prob: (a node fails |

receiving the poison message j), then we have

Pðsikþ1 ¼ 1 j Sk;Uk; dk ¼ jÞ ¼ p1 � p2.

We have the following observations about p1 and

p2.

(1) p1 depends on the network topology and how

message type j is used in the network, etc. p1 can

be determined from simulation.

(2) p2 is independent of node status vector Sk and

independent of receiving node i. p2 can be esti-

mated online based on failed node history and

p
j
kþ1 ¼ Pðdkþ1 ¼ j j Ikþ1Þ

¼ Pðdkþ1 ¼ j j Z0; � � � ; Zk; Zkþ1;U0; � � � ;Uk�1;UkÞ
¼ Pðdkþ1 ¼ j j S0; � � � ; Sk; Skþ1;U0; � � � ;Uk�1;UkÞ
¼ Pðdkþ1 ¼ j j Ik; Skþ1;UkÞ
¼ Pðdkþ1 ¼ j; Skþ1 j Ik;UkÞ=PðSkþ1 j Ik;UkÞ

¼
XN
i¼1

fPðdk ¼ i j IkÞ � Pðdkþ1 ¼ j j dk ¼ i;UkÞ � PðSkþ1 j Ik;Uk; dk ¼ i; dkþ1 ¼ jÞg=PðSkþ1 j Ik;UkÞ

ðfrom ð�Þ; only when i ¼ j; Pðdkþ1 ¼ j j dk ¼ i;UkÞ ¼ 1; otherwise it is 0:Þ
¼ Pðdk ¼ j j IkÞ � PðSkþ1 j Ik;Uk; dkþ1 ¼ jÞ=PðSkþ1 j Ik;UkÞ
¼ @2 � p

j
k � PðSkþ1 j Ik;Uk; dkþ1 ¼ jÞ
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current probability distribution Pk. The details are

given below.

Online Estimation of p2. In most cases, the probability

p2 is unknown. We propose to estimate p2 by using an

online estimation technique that utilizes the node

failure sequence observed online. We change the

notation to be an estimation context as follows.

Given observation of failed nodes y¼H, we want to

estimate � ¼ p2. We use a popular estimation

method—Maximum A Posterior (MAP) estimation,

which finds the parameter � that maximizes

pð� j y; dk ¼ jÞ. We have

Since we have no prior information about �, we
assume pð� j dk ¼ jÞ has uniform distribution in [0,1].

The probability pðy j �; dk ¼ jÞ is the distribution of

failed nodes given the poison message j and parameter

�, so pðy j �; dk ¼ jÞ can be estimated from simula-

tions. Given pð� j dk ¼ jÞ and pðy j �; dk ¼ jÞ, we can

compute (**) for any �, and the MAP estimation

outputs the � that achieves the maximum in (**).

The estimated � ¼ p2 is then used in active diagno-

sis—the sequential decision problem. At each time

step, p2 is updated when new failed nodes are ob-

served.

The estimation of p2 may not be very accurate, but

it could be enough for choosing a good suboptimal

policy. In general, it is desirable to find a policy that

works reasonably well for a range of parameter values

(e.g., p2) since there is inherent parameter uncertainty

in this problem. Furthermore, when the number of

nodes in the network is large, this sequential decision

problem becomes a large POMDP, which makes the

exact solution of this problem intractable. So the best

one can hope for is to find an approximate solution to

the sequential decision problem that is robust to

parameter uncertainty.

4. Experimental Results
of Active Diagnosis

The state space is very large for the sequential

decision problem, and it is impossible to solve the

problem using classic MDP solution techniques such

as value iteration or policy iteration [15]. One heur-

istic policy that we have considered is to block a

single message type at each decision time step. The

message type selected for blocking is the one that has

the smallest ratio E[C]/p where the E[C] is the

expected cost (in terms of network performance) to

block the message type for a time step, and p is the

current estimate of the probability that the message

type is the poison one. The use of these ratios to order

diagnostic tests for network fault management has

been discussed in References [13,14]. In this section,

we compare the performance of the heuristic policy

with another policy obtained by using reinforcement

learning [16] and Q-factor approximation [17].

4.1. Q-Factor Approximation

Denote the (optimal) Q-factor at state i with action u

as: Qði; uÞ ¼ gði; uÞ þ E
j
fJðjÞg, where J(j) is the mini-

mum achievable cost to reach termination starting

from state j, that is, cost to go from state j under an

optimal policy. (Note that j represents a state here, not

a message type as before.) The interpretation is that

Q(i, u) is the expected cost of starting in state i,

initially taking the action u, and thereafter choosing

actions according to an optimal policy. Given the Q-

factor, J(i) is obtained by minimizing Q(i, u) over all

admissible u. Furthermore, the minimizing u gives the

action that would be taken in state i by an optimal

policy. Thus, determining Q(i, u) for all state-action

pairs (i, u) implicitly specifies the optimal policy.

In our problem, state i consists of the status (normal

or failed) of each node and the probability vector of

each suspect message type being poison. The number

of the node status vectors is exponential in the number

of nodes, while the number of values of the probability

vector (assuming the space of probabilities is discre-

tized) is exponential in the number of message types.

Thus, the problem suffers from the well-known ‘curse

of dimensionality’ for dynamic programming [17].

To overcome this computational problem, we use

parametrized Q-factors. Instead of associating a

value with each state, one uses a parametric form to

max
�

pð� j y; dk ¼ jÞ ðby Bayes0 ruleÞ

¼ max
�

pðy j �; dk ¼ jÞ � pð� j dk ¼ jÞ=
Z
�

pðy j �; dk ¼ jÞ � pð� j dk ¼ jÞd�
ð��Þ
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approximate the optimal Q-factor. The parametric

form we consider is a linear approximation architec-

ture: Qði; u; rÞ ¼ �ði; uÞTr, where �ði; uÞ is called the

feature vector and r is the parameter vector.

The Q-factor approximation is expressed as a linear

combination of so-called features. Each feature is a

(possibly nonlinear) function of (i, u). The coefficients

in the linear combination are the components of the

parameter vector r. A gradient descent algorithm is

used to tune the parameter values to attempt to get a

good approximation for the actual Q-factor. It is

known that the success of such approximations de-

pends on how the feature vector �ði; uÞ is chosen. The
feature vector �ði; uÞ is meant to capture those ‘fea-

tures’ of the state i and action u that are considered

most relevant to the decision making process. Usually,

the feature vector is handcrafted based on available

insights on the nature of the problem, prior experience

with similar problems, or experimentation with sim-

ple versions of the problem.

4.2. TD (l) Estimation

We use online gradient-based temporal difference TD

(l) method [16,17] for approximating the optimal

Q-factor Q(i, u) by optimizing the parameter r.

The algorithm is stated below, where zk is called

the eligibility trace [16,17]. It is a vector of the

same dimension as r.

1. Initialize r and z0 ¼ 0.

2. Repeat:

At state ik, take action uk ¼ argmin
u2Uk

Qðik; u; rÞ
that is "-greedy to the current Q-factor. That is,

most of the time, we choose the greedy action,

the action that minimizes the current Q-factor

approximation for the current state, but with

some small probability ", we choose a non-

greedy (e.g., random) action. This is to ensure

sufficient exploration of the state and action

space. After the action uk, the one step cost

gðik; ukÞ and the next state ikþ1 are recorded.

Then we can choose next action—ukþ1 that is

"-greedy with respect to Qðikþ1; u; rÞ.
Calculate TD:

dk ¼ gðik; ukÞ þ Qðikþ1; ukþ1; rÞ � Qðik; uk; rÞ
Update zk:

zk ¼lzk�1 þrrQðik; uk; rÞ ¼lzk�1

þrr�ðik; ukÞTr ¼lzk�1 þ �ðik; ukÞ
or zk ¼

Pk
m¼0

lk�m�ðim; umÞ
Update r: r :¼ r þ dkzk

until terminal state.

4.3. Test Results

First, we need to determine the feature functions.

Once the features have been chosen, we use the

algorithm above to tune the parameters in the vector

r to obtain a good approximation for the optimal Q-

factor. This approximate optimal Q-factor in turn

determines a policy. This is the policy that is greedy

with respect to the approximate Q-factor; that is, for a

state i, it chooses the action u that minimizes the

approximate Q-factor over all pairs (i, u). We then

compare the performance of the greedy policy with

that of the heuristic policy. We perform two types of

comparisons. In the first comparison, we fix the initial

state and use Monte Carlo simulation [16] to estimate

the expected cost-to-go under each policy. In the

second comparison, we allow the initial state to

vary. For each initial state, we generate ‘parallel’

trajectories following each of the two policies, and

we compare the cost-to-go under the two policies. To

simplify the computations, in this subsection we

restrict the action space for the MDP to include only

actions that block a single message, that is, we

exclude actions that block multiple message types at

one time step.

We need to select feature functions for the

linear approximation architecture of the Q-factor:

Qði; u; rÞ ¼ �ði; uÞTr. We first tried linear functions

of Sk;Pk, and Uk (defined in Section 3). However, they

did not provide good approximation for the Q-factor.

Then, we tried quadratic functions of Sk;Pk, and Uk

and obtained much better results. There are 14 nodes

(M¼ 14) and 6 different message types (N¼ 6) in our

OPNET simulation testbed. After considerable trial

and error, we find a good approximation architecture

for the Q-factor to be

Qðik; uk; rÞ

¼ QðSk;Pk; uk; rÞ ¼ r0 þ
XM
l¼1

slkrl þ
XN
j¼1

p
j
krjþM

þ
XN
f¼1

fukf rfþMþNþukf p
f
krfþMþ2N þ ukf hðf ÞrfþMþ3Ng

Thus, there are totally 1þMþNþ 3N¼ 1þ
14þ 6þ 6*3¼ 39 elements in the parameter vector r.

4.3.1. Comparison of Q-factor

Before applying the learning algorithm to tune the

components in the parameter vector r, we need to

determine the cost functions g1, g2, and g3 (defined in
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Section 3). Ideally, we could extend our control plane

simulation model to include the data plane as well,

and then we could use it to evaluate the actual cost to

network performance (e.g., throughput) resulting

from blocking message types, node failures, and net-

work partitions. Since our current simulator does not

include the data plane, we simply assigned cost to

each node according to the location, functionality of

the node, and the network topology in the testbed.

We assigned the cost of turning off a message type

according to the importance of the message type. The

cost for each node failure is given in Table V, and

the cost of blocking each message type is given in

Table VI.

In our simulations, most of the time the network is

not partitioned by failed nodes, so we set g3 ¼ 0 in the

tests. Monte-Carlo simulations are used to estimate

the Q-factor under the heuristic policy at some typical

state action pair (i, u). After using the learning algo-

rithm to tune r, we also use Monte-Carlo method to

estimate the Q-factor under the policy which deter-

mines u in state i by minimizing Qði; u; rÞ over u.

Then, we compare the Q-factors and cost-to-go under

the two policies.

For the heuristic policy �, the Q-factor is:

Q�ði1; uÞ ¼ gði1; uÞ þ E
i2
fJ�ði2Þg, and it is evaluated

by Monte-Carlo method. Q�ði; uÞ is the Q-factor

under policy � and with state action pair (i, u). J�ðiÞ
is the cost-to-go under policy � at state i. This is the

expected cost-to-go when action u is taken in the

initial state i1 and the remaining actions are chosen

according to the heuristic policy.

We compare the heuristic policy with the policy

� ¼ argminu Qði; u; rÞ, which is greedy with respect

to the optimal Q-factor approximation Qði; u; rÞ. The
Q-factor for the greedy policy is given by

Q�ði1; uÞ ¼ gði1; uÞ þ E
i2
fJ�ði2Þg and is also evaluated

by Monte-Carlo method. This is the expected cost-to-

go when action u is taken in the initial state i1 and the

remaining actions are chosen according to the policy

�. We call � the greedy policy in the following

discussion.

To calculate the Q-factors by Monte-Carlo simula-

tions, we need to update the state (Sk and Pk defined in

Section 3). To do this, the transition probabilities are

needed. For the update of Sk, we obtain the propaga-

tion probabilities (p1 in Section 3) through extensive

simulations. The failure probability of each poison

message—p2 (i.e., the probability that a poison mes-

sage fails a node) is also needed. In these tests, we did

not use the online estimation technique mentioned in

Section 3 to estimate p2. Instead, we use the known

failure probability that is set in the simulation for

simplification. The transition probabilities are com-

puted from the propagation probabilities and the fail-

ure probabilities. For the update of Pk, the probability

PðSkþ1 j Ik;Uk; dkþ1 ¼ jÞ is obtained from simulation.

We start from a typical initial state i1 ¼ S1 ¼ ½1; 7;
8; 12�; P1 ¼ ½1=6; 1=6; 1=6; 1=6; 1=6; 1=6�, which is a

state with four failed nodes: nodes 1, 7, 8, and 12, and

initially the probability distribution is uniform. Then,

we estimate the Q-factor under each policy for state i1
with six different actions. Each Q-factor value is

estimated over 20 different simulation trajectories

starting from state action pair (i1, u). The results are

shown in Table VII. In Table VII, the 1st row is the

action u being six different values. u¼ 1 means that

the 1st message type is turned off, and the rest is

similar. The 2nd row gives the value of the Q-factors

Table V. The cost of each node being failed.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cost 60 40 70 60 55 50 80 70 65 50 90 75 90 70

Table VI. The cost of turning off each message type

Message BGP BGP OSPF LDP LDP LDP
update keepalive hello hello keepalive request

Cost 250 350 500 150 120 120

Table VII. Comparison of Q-factors.

Action u 1 2 3 4 5 6

Q�ði1; uÞ 2248 2367 2433 2079 2127 2254
Q�ði1; uÞ 1444 1454 1247 1448 1390 1269
Q�=Q�ð%Þ 64.2 61.4 51.3 69.6 65.4 56.3

Table VIII. Comparison of value functions.

Value function Policy � Policy �

Jði1Þ 2433 1247
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with the first action being u and then following the

heuristic policy �. The 3rd row gives the values of

the Q-factors corresponding to the greedy policy �.
The last row is the ratio between the Q-factors under

the two policies. We can see from Table VII, the Q-

factor at the same state action pair (i1, u) under the

greedy policy � is much less than that under the

heuristic policy. As the last row shows, Q� is only

about 50�70% of Q�. This means that the greedy

policy is much better than the heuristic policy. Thus,

we do find a better policy by Q-factor approximation.

In Table VIII, we compare the value function Jði1Þ at
state i1 under the heuristic policy and the greedy

policy. The value function J�ði1Þ under the greedy

policy is only about 50% of the value function J�ði1Þ
under the heuristic policy.

4.3.2. Comparison of two policies

We run parallel simulations from the same initial

states. One simulation uses the heuristic policy while

the other uses the greedy policy. We do this for many

initial states. The simulations are constructed to be

‘coupled’ in that unless one policy blocks propagation

and the other does not, exactly the same thing happens

in the two simulations.

In Table IX, we present the test results for eight

different initial states. The 1st row is the index of the

initial states, and each number represents a different

initial state. The 2nd row is the action sequence under

the heuristic policy �. For example, the action se-

quence in case 1 is 635412. It means by following the

heuristic policy �, the first action is 6 (which turns off

message type 6), then turns off message type 3,

message type 5, message type 4, message type 1,

and message type 2. The bold number corresponds to

the poison message in the simulation. For example,

message type 2 is the poison message in case 1. The

3rd row is the action sequence under the greedy policy

�. As we can see from Table IX, the greedy policy �
performs much better than the heuristic policy �. The
greedy policy can find out the poison message in two

or three steps, while the heuristic policy takes more

steps. According to the eight cases we tested, the

heuristic policy � averaged four steps to find out

the poison message, while the greedy policy only

takes 2.6 steps on average.

5. Conclusions

We have discussed a particular failure propagation

mechanism—the poison message failure, and de-

signed a framework to identify the responsible mes-

sage type. We proposed passive diagnosis, which

includes the FSM approach applied at individual

failed nodes, correlating protocol events across multi-

ple failed nodes, and using neural networks to exploit

node failure pattern. Simulations showed the effec-

tiveness of passive diagnosis. Passive diagnosis gen-

erates a probability distribution of the poison message

and the probability distribution is used by active

diagnosis. In active diagnosis, message filtering is

used to block suspect message types or protocols.

We formulated message filtering as a MDP, and

obtained a good suboptimal policy for the MDP by

using reinforcement learning and function approxima-

tion. Extensive simulations demonstrate that the fault

management framework is very effective in identify-

ing the poison message failure.
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