IP Geolocation in Metropolitan Areas

Satinder Pal Singh
Bobby Bhattacharjee

Randolph Baden
Richard La

Choon Lee
Mark Shayman

University of Maryland,
College Park, 20742, USA

ABSTRACT

Current IP geoloation techniques can geolocate an IP ad-
dress to a region approximately 700 square miles, roughly
the size of a metropolitan area. We model geolocation as a
pattern-recognition problem, and introduce techniques that
geolocate addresses to within 5 miles inside a metropoli-
tan area. We propose two complementary algorithms: The
first algorithm, Pattern Based Geolocation (PBG), models
the distribution of latencies to the target and compares it
to those of the reference landmarks to resolve an address to
within 5 miles in a metropolitan area. The second approach,
Perturbation Augmented PBG (PAPBG), provides higher
resolution by sending extra traffic in the network. While
sending an aggregate of 600 Kbps extra traffic to 20 nodes
for approximately 2 minutes, PAPBG geolocates addresses
to within 3 miles.

Catetogies and Subject Descriptors C.2.3 [Computer-
Communication Systems]: Network Operations — Public
Networks

General Terms: Experimentation, Measurement

Keywords: Geolocation, Pattern Recognition, Probability
Mass Function, Perturbation, Divergence

1. INTRODUCTION

IP Geolocation algorithms map IP addresses to geographic
locations. Geolocation can be used for targeted advertising,
efficient content distribution, location-specific content cus-
tomization, and critical emergency services including E-911
for Voice-over-IP telephones [7, 3].

State-of-the-art IP geolocation techniques resolve addresses
to approximately 30 miles [5, 8], roughly the diameter of a
metropolitan area. In this paper, we present two new ap-

proaches for finer resolution IP Geolocation inside a metropoli-

tan area. Our work departs from prior measurement-based
geolocation approaches, all of which correlate latency with
distance.

We model geolocation as a pattern recognition problem.
Our algorithms identify and extract patterns from network
statistics to geolocate an IP address. We propose a new Pat-
tern Based Geolocation (PBG), which captures patterns in
the distribution of latencies or Round Trip Times (RTTs)
observed to a target. PBG models the signature of back-
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ground traffic in the vicinity of the target and uses this
‘signature’ to geolocate the target to approximately 5 miles
of its actual location. To further improve the resolution of
PBG, we develop Perturbation Augumented PBG (PAPBG),
which is inspired by Stochastic Resonance [1]. PAPBG sends
a small amount of signal traffic in the network to enhance
the signature of background traffic. At the cost sending an
additional 600 Kbps aggregrate traffic to 20 nodes for ap-
proximately 2 minutes, PAPBG gives a higher resolution in
the location estimate and geolocates the target to within 3
miles.

2. OUR APPROACH

Our infrastructure consists of a collection of probe and
landmark nodes. We administer three probe nodes in Mary-
land, USA: one in the city of College Park on Qwest network
and one each in Silver Spring and Potomac on Verizon net-
work. We have 20 landmarks distributed over 700 square
miles large Washington D.C.-Baltimore metropolitan area
on Comcast (12) and Verizon (8) networks. The mean pair-
wise distance between the landmarks is 8.4 miles for Com-
cast network and 11.8 miles for Verizon network.

Our techniques geolocate a target to the ‘best matching’
landmark in the testbed. Given a set of landmarks, the
best possible estimate of a target’s geographic location is the
landmark which is geographically closest to it. Suppose Smin
is the distance between the target and the geographically
closest landmark. Let s™ be the distance between ‘the best
matching landmark’ given by a geolocation algorithm and
the target. Then the error of the location estimate of that
geolocation algorithm is &€ = s* — smin. Here £ > 0, with
equality when the ‘best matching landmark’ given by the
geolocation algorithm is in fact the geographically closest
landmark.

Exisiting measurement based geolocation techniques as-
sume correlation between distance and RTTs [5]. However,
in a metropolitan area this correlation does not exist ba-
cause propogation delay is a small component of RTTs, and
the dominant component is queuing delay [2]. Our approach
models IP geolocation as a pattern recognition problem and
aims to geolocate a target by identifying, extracting and
matching ‘patterns from RTT sequences’.

2.1 Pattern Based Geolocation

Pattern Based Geolocation (PBG) uses the distribution
of the RTT values as pattern for geolocation. First, we
construct Probability Mass Functions (PMFs) from the col-



lected RTT sequences to model the distribution of RTTs
using ‘k Nearest Neighbor’ density estimation method [4].

Next, we compare the PMFs of the landmarks to the PMF
of the target to get the best match in shape. In our prob-
lem we encounter frequent cases where PMF's are similar in
shape but shifted by a few milliseconds. To address this, we
introduce a new distance metric called “Shifted Symmetrized
Divergence” distance, (dssp), defined as:

dssp(pla) = axmin(dso(plg.)) +
(1 —a) X ¢(smin) (1
Here
D, q = two PMFs
qs = PMF ¢ shifted by s
dsp = Symmetric Kullback-Leibler Divergence [4]
$min = arg min(dsp(pllgs))
10} = penalty function for shift
a = weight

Using dssp each probe node does PBG computations to
obtain divergence values for each landmark. We finally out-
put the landmark with the minimum mean divergence over
all probe nodes as the target’s location estimate. The two
parameters involved in PBG computations, ¢ and a, are
chosen empirically using a training dataset (See Section 3).

2.2 Perturbation Augmented PBG

PBG relies on the background traffic in the vicinity of a
target. However, in some instances, the background traf-
fic signature is not strong enough, and PBG fails to map
the target to geographically close landmark. Perturbation
Augmented PBG (PAPBG), inspired by Stochastic Reso-
nance [1], enhances the background traffic signature by in-
troducing a controlled amount of “perturbation” traffic into
the network using a perturber.

The technique works as follows. One of the probe nodes,
acting as perturber, sends large ICMP echo request pack-
ets (e.g. of size 100 bytes each) to all the landmarks and
the target at a rate, say 50 packets per second. This cor-
responds to signal traffic of 40 Kbps to each landmark and
target. The remaining probe nodes send regular small ICMP
request packets (of size 30 bytes each) at a nominal rate of
5 packets per second for 100 seconds to measure the RTT
sequences. These probe nodes then run PBG algorithms
on the measured RTT sequences to give the best matching
landmark. Thus, PAPBG is essentially PBG with an ad-
ditional perturber which introduces a controlled amount of
perturbation traffic in the network for better differentiation
of PMFs.

3. EXPERIMENTSAND RESULTS

We first collected 30 training data sets to empirically choose
the ‘best values’ for ¢ and a. Each dataset consists of syn-
chronous RT'T sequences collected from the two probe nodes
at College Park and Siver Spring over 20 landmarks in our
testbed. We collected RTT squences at a rate of 5 samples
per second for 100 seconds from each landmark per probe
node. We explored three penalty functions, Logarithmic,
Linear and Exponential, and 100 values of a € [0,1]. For
each combination of the two parameter values we used a

leave-one-out [6] approach to run PBG on the 30 training
data sets. The best performance (minimum mean geoloca-
tion error) was obtained for exponential penalty function
(¢(smin) = 2°m*), and a = 0.9 for Comcast network and
a = 0.95 for Verizon network.

To evaluate the performance of PBG we collected 50 addi-
tional datasets with the same setup as mentioned above. Us-
ing the same leave-one-out approach and parameter values
discussed above, we ran PBG computations on this data. To
compare the performance of PBG we used an existing mea-
surement based geolocation technique, Constraint Based Ge-
olocation (CBG) [5], to geolocate targets on these datasets
as well.

The mean error obtained with CBG was 15.39 miles for
Comcast network and 18.06 miles for Verizon network, which
is worse than the mean pairwise distance between the land-
marks on the two networks. Compared to this, our PBG
gives a mean error of 2.13 miles for Comcast network and
4.34 miles for Verizon network. Further, on an average PBG
matches the target to the geographically closest landmark in
majority of the cases (>50%). Note that if we randomly se-
lect one of the landmarks as target’s location estimate, the
mean error obtained is 7.62 miles for Comcast network and
8.76 miles for Verizon network. Thus, existing techniques
perform worse than ‘random selection’, while PBG geolo-
cates the target to within 2 — 4 miles of its actual location.

For PAPBG we collected additional datasets for 5 pertur-
bation intensites: 10, 20, 30, 40 and 50 Kbps per destination
node. We used the probe node at Potomac as perturber and
collected 50 datasets for each intensity using the other two
probe nodes. We achieved the best performance for per-
turbation intensity of 30 Kbps; the mean error reduces to
1.2 miles for Comcast network and 3.4 miles for Verizon
network. Beyond 30 Kbps we enter a region of diminish-
ing returns and no more gains in performance are obtained.
Thus by sending an additional 30 Kbps traffic to each of 20
nodes for 100 seconds, PAPBG reduces geolocation error by
approximately 20 — 40%.
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