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Abstract— This paper proposesa simple analytical model called
�

time-scale Mark ov Decision Process(MMDP) for hierarchically struc-
tur ed sequentialdecisionmaking processes,where decisionsin eachlevel
in the

�
-level hierarchy are made in

�
different discrete time-scales.

In this model, the state spaceand the control spaceof each level in the
hierarchy are non-overlapping with thoseof the other levels, respectively,
and the hierarchy is structured in a “pyramid” sensesuch that a decision
made at level � (slower time-scale)state and/or the state will affect the
evolutionary decision making processof the lower level ����� (faster
time-scale)until a new decisionis made at the higher level but the lower
level decisionsthemselvesdo not affect the transition dynamics of higher
levels. The performance producedby the lower level decisionswill affect
the higher level decisions.A hierarchical objective function is defined
such that the finite-horizon value of following a (nonstationary) policy at
level ����� over a decision epochof level � plus an immediate reward
at level � is the single-stepreward for the decision making processat
level � . From this we define “multi-le vel optimal value function” and
derive “multi-le vel optimality equation”. We discusshow to solve MMDPs
exactly and study some approximation methods, along with heuristic
sampling-basedschemes,to solve MMDPs.

Index Terms— Mark ov decisionprocess,multi-time scale,hierarchical
control, rolling horizon

I . INTRODUCTION

H IERARCHICALLY structured control problems have been
studiedextensively in many contexts in variousareaswith many

types of models.Two distinguishedhierarchicalstructuresstudied
in the literature are “multi-level structure”,where decisionmaking
algorithms in different levels operatein different time-scales(see,
e.g., [21]) and “multi-layer structure”,wherealgorithmsaredivided
“spatially” andoperateat the sametime-scale(see,e.g., [12]).

This paperfocuseson control problemswith a particular multi-
level structure— hierarchically structured sequentialdecisionmak-
ing processes, wheredecisionsin eachlevel in thehierarchyaremade
in different discretetime-scalesand the hierarchyis structuredin a
pyramid (bottom-uporganization)sense.That is, decisionsmadein
thehigherlevel affect thedecisionmakingprocessof the lower level
but the lower level decisionsdo not affect the higher level (state
transition)dynamicseven thoughthe performanceproducedby the
lower level decisionswill affect thedecisionsthatwill bemadeby the
higherlevel. A usualapproachto themulti-level structuredproblems
is that a slow time-scalesubsystemlays asidethe details of a fast
time-scaledynamicsby “average”behavior and then solves its own
optimizationproblem.In particular, theapproachwith a pyramid-like
hierarchicalstructurewasusedin theperspective of “performability”
and “dependability” in Trivedi et al.’s model [14] [23] even though
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controlsarenot involved in the model(seealso[13] [5] andchapter
11 in [28] for usinga similar idea).

In this paper, weproposea simpleanalyticalmodelthatgeneralizes
Trivedi et al.’s hierarchical model by incorporating controls into
the model, which we refer to as Multi-time scaleMarkov Decision
Process(MMDP). Themodeldescribesinteractionsbetweenlevels in
a hierarchyin thepyramidsense.Hierarchicalobjective functionsare
definedsuchthat the (quasi-steadystate)performancemeasure,the
finite horizonvalueof following a given lower level policy, obtained
from the lower level over the decisionepochof the upperlevel will
affect the upperlevel decisionmaking.From this we define“multi-
level valuefunction” andthendrive “multi-level optimality equation”
for infinite horizon discountedreward and averagereward, respec-
tively. After discussingthe exact methodsfor computingthe optimal
multi-level valuefunction,we presentapproximationmethodssuited
for solving MMDPs and analyzeits performanceand discusshow
to apply somepreviously publishedon-line solution schemesin the
context of MMDPs.

This paper is organizedas follows. We start with somecontrol
problem examplesto motivate the model proposedin the present
paperin SectionII andpresenta formal descriptionof MMDPs and
characterizeoptimal solutionsfor MMDPs in SectionIII anddiscuss
solutionmethodologiesin SectionIV. We thendiscussrelevantwork
of hierarchicalmodelsrelatedto ourmodelin SectionV. Weconclude
our paperin SectionVI.

I I . MOTIVATING EXAMPLES

A. Productionplanning

Hierarchicalproductionplanning problemshave beenstudiedin
the operationsresearchliteratureover many years(see,e.g.,[28] for
references).We presenta simple productionplanningproblemin a
manufacturingenvironmentasthe first motivating example.We base
our discussionon the problemstudiedin [5].

The productionplanningproblemwe considerhereis divided into
two levels:“marketingmanagement”level and“operational”level. At
themarketing managementlevel, we needto controlwhich family to
produceover each(slow time-scale)decisionepoch,wherea family
is a setof itemsconsumingthesameamountof resourcesandsharing
the samesetup[5]. The upperlevel stateconsistsof (stochastically)
available resourcesfor eachfamily and (stochastic)setupcostsfor
each family, and some market-dependentfactors.The upper level
action is to choosewhich family to produce.

At the operationallevel, we needto determineactual quantities
of the items in the family (the lower level actions)given stochastic
(Markovian)demandsfor theitems,productioncapacity, holdingcost,
materialcost,etc.,which will constitutea stateof the lower level.

The return at the operationallevel will be a function of the unit
sellingpriceof the items,the inventoryholdingcosts,thesetupcosts
of the(current)family, theproductionquantityof the items,etc.,and
a finite horizonexpectedaccumulatedreturnat the operationallevel
will be the one-stepreturnfor the managementlevel from which the
managementlevel makes decisions.We wish to develop a two-level
productionplan to maximizerevenueof the manufacturingsystem.
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B. Call routing with buffer managementor scheduling

In additionto inherentlyexisting hierarchicalandmulti-time scale
control structurein problemsthemselves that arisein many different
contexts, our modelis alsomotivatedby theobservation madein the
networking literaturerecently. Thenetwork traffic shows fluctuations
on multiple time-scales— scaleinvariantburstiness(see,e.g.,[34]),
and this characteristicin the network traffic has beenwell-studied
by “long-rangedependent”or “self-similar” model. However, there
are several recentworks that investigatedthe effects of suchmulti-
time scaled behavior by certain relevant Markovian models that
approximatethe fluctuationsin the traffic (see,e.g., [29] [32] [22]
andreferencestherein).The usualinterestsare in calculationsof the
buffer overflow probability distribution but are not concernedwith
developmentof analyticalmulti-time scaledcontrolsthat incorporate
given traffic modelsfor suchbehaviors of the network traffic even
thoughsomenon-Markovian model basedapproachesare available
(see,e.g., [33] and [15]). For example, the slow time-scale(“call-
level”) relatesto thearrival anddepartureprocessof video/voicecalls
and the fast time-scale(“packet-level”) relatesto the packet arrival
processof calls during their “lifetimes”. This different time-scaled
dynamicscausesfluctuationsin the traffic at different time-scales
andgives rise to a multi-time scaledqueueingcontrol problem.

Considera simplecall-routingproblemwith buffer managementor
scheduling.Thereis a network with ��	�
 parallel links betweena
pair of sourceanddestination.At thesource,singleclass(voice)calls
arrive with an arrival rate accordingto Bernoulli processin a slow
time-scale.Thecall’s holding time is geometricallydistributedin the
slow time-scale.The call-level or upperlevel decisionprocessis to
either reject a newly arrived call or route the newly arrived call to
oneof the � parallellinks if accepted.We assumethat for eachlink,
thereare(possiblyzero)crosstraffic (video)calls.For simplicity, the
video calls are initially set up and do not depart(if we incorporate
the dynamicsof video call arrival and departureprocess,we would
have a three-level decisionmaking processand the control process
in the highestlevel is to assignvideocalls among� parallel links or
reject).

It is assumedthat all voice calls have the sametraffic rate (i.e.,
bandwidthrequirement)and this is also true of the video calls. In
otherwords, the model that describespacket (of the samesizewith
the unit time in fast time-scale)arrival processof the voice call is
the same.For example,if On/Off model is used,eacharriving call
hasthesameOn/Off modelparameters.This alsoholdsfor thevideo
calls.For instancewe may useMarkov modulatedBernoulli process
to modelvideopacket arrival process[11] andit is alsoassumedthat
all video calls sharethe samemodelparameters.

The upper level control stateconsistsof the numberof currently
pendingvoice and video calls at each link. The lower level state
consistsof the traffic statesfor voice traffic andvideo traffic andthe
numberof packets in the (finite FIFO) buffer for voice andvideo at
eachlink. Thecontrolactionat the lower level is to control thequeue
size,e.g.,via an admissioncontrol or droppingpackets at eachlink
or schedulethesemulticlasspackets.

We wish to develop a two-level control policy suchthat the upper
level call admissioncontrol effectively balancesthe loads of each
link dependingon theperformancemadeby thelower level queueing
control of the packets to maintaina desiredthroughput/delay.

I I I . MULTI-TIME SCALE MDP

We first presentthe two time-scaleMDP modelfor simplicity. The�
time-scalemodelwith

� 	� canbeextendedfrom thetwo time-
scalemodel without any difficulty andwe will remarkon this issue
later.
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Fig. 1. Graphicalillustration of time evolution in the two time-scaleMDPs

A. Themodel

The upper level (slow time-scale)MDP has a finite statespace�
and a finite action space � . At each (discrete) decision time��������� 
 �  ����������� and at a state � � � �

, an action !"� � � is
taken and �#� makes transitionto a state � �%$'& � �

accordingto the
probability (*),+-� �%$'&�. � � � ! �0/ . Dependingon which action has been
taken at which statein the upper level MDP, the lower level (fast
time-scale)MDP over one-stepslow time-scaleperiodis determined
accordingly (what we meanby this will be clearerbelow). Every
MDP in the lower level sharesthe samestateandaction space.We
denotethe finite statespaceand the finite action spaceby 1 and2

, respectively. We assumethat
�43 16587 and

2 3 �9587 . We
also assumethat every control action is admissibleat eachstatein
eachlevel for simplicity. We denotetime in the fast time-scaleas: �;� :=< � : & � :=> �?����� � and

: �A@ 5 � , � 5 ��� 
 �?����� and B is a fixed finite
scalefactorbetweenslow andfasttime-scales.We implicitly assume
that

: �C@ 5 �ED�F , where F is a positive numberarbitrarily closeto
zero.That is, thereis an infinitesimal gapbetween

: �A@ and � such
that a fast time-scaledecisionat time

: �C@ is madeslightly after a
slow time-scaledecisionat time � hasbeenmade.

Let theinitial statein thelower level MDP be G � 1 andtheinitial
statein theupperlevel MDP be � � �

( G,HJIK5LG and � < 5L� at � 5 � ).
Over the time stepsof

: < � : & �?������� : @NMN& , the systemfollows the lower
level MDP evolution.At thestateG at

:=<
, anaction O � 2

is takenandG makestransitionto thenext stateP � 1 , which is thestateat time: & , accordingto the probability (*Q#+-P . G � O � � � ! / and a nonnegative
and boundedreward of R Q +-G � O � � � ! / is incurredand this processis
repeatedat the state P at

: & , andso forth until the time
: @NMS& . That

is, the statetransitionfunction and the reward function in the lower
level MDP (over B -epoch)are inducedby the upperlevel stateand
decision.At time � 5�
 , an upperlevel action !N& will be taken at �=&
(this will triggera new MDP determination)andstartingwith a stateT at

: @ (determinedstochasticallyfrom (*Q + T . G H-U"VXW � O HYU"VXW � � < � ! < / ),
the newly determinedlower level MDP evolves (over the next B -
epoch).SeeFigure 1 for graphicalillustration of time evolution in
this process.

Throughoutthis paper, we will usethe term “decisionrule” when
referring to infinite horizonand the term “policy” whenreferring to
finite horizon. Define a lower level decisionrule Z Q 5 ��[ Q� � , � 5��� 
 ������� , as a sequenceof B -horizon nonstationarypolicies defined
such that for all � , [ Q� 5 ��\ HY] U ���������^\ H`_ ]Aa W#b�U,VXW � is a sequenceof
functionswherefor all ced � , \ H-fhg 1ji � ie��k 2

. We will say
that a lower level decisionrule is stationarywith respectto the slow
time-scale� if [ Q� 5 [ Q�Al for all �m�=�on andwe will restrict ourselves
to only this classof decisionrules here. We will denotethe set of
all possiblesuchstationarydecisionrules with respectto the slow
time-scaleas p Q , and omit the subscript � in [ Q� in this caseand
usethe time

:=< �?������� : @NMN& to refer the sequenceof functionsof [ Q if
necessary, and denote q Q as the set of all possiblesuch B -horizon
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nonstationarypolicies [ Q . We will alsoomit the subscripton \ if [ Q
is stationaryr (with respectto the fast time-scale).

Given a lower level decisionrule Z Q � p Q anda nonnegative and
boundedimmediatereward function s ) definedover

� it� for the
upper level, we define a function R ) such that for all � d � , forG � 1 , � � � �

and ! � � � ,R ) +-G � � � � !"� �=[ Q / 5uwvx ],y z{] | H`_ ]Aa W#b�U,VXW}H-~oHY] U��'��� H-� R Q +-G,H ��\ H^+-G"H � � � � !"� / � � � � !"� /��D s ) +-� � � ! �0/ ����� ��� 
 � (1)

where ��+ : �A@"$�� / 5�� for all � with ��5 ��� 
 ��������� B���
 , and the
superscriptG on

u
signifies the initial state, G"HY] U 5�G , and the

subscript � � � ! � on
u

signifies that � � and ! � for the expectation
are fixed. We will usethis notationalmethodthroughoutthe paper.
The function R ) is simply the B -horizontotal expected(discounted)
rewardof following the B -horizonnonstationarypolicy [ Q given � � ��

and !"� � � startingwith stateG � 1 with thezeroterminalreward
function1 plusanimmediaterewardof takinganaction !"� at thestate� � at the upperlevel.

Thetotal expected(discounted)rewardachievedby thelower levelB -horizon nonstationarypolicy [ Q with an immediatereward at the
upperlevel will act asa single-stepreward for the upperlevel MDP.
Definean upperlevel stationarydecisionrule Z ) asa function Z ) g16i � k�� and we denote p�) as the set of all possiblesuch
stationarydecisionrules.Given the initial statesG � 1 and � � �

,
our goal is to obtain a decisionrule pair of Z Q � p Q and Z ) � p )
thatachievesthe following functionalvaluedefinedover 1�i �

: with�����t� 
 ,�4� +-G � � /�g 5�h�{����X C¡¢� �h�{��?£` A¡�£ uwv y x |L¤}�A~ < � � R ) +-G,HY] U � � � � Z ) +-G,HJ] U � �#� / �=[ Q /��
5 �h�{��¥�0 C¡¢� �h�{�� £  C¡ £ uwv y x | ¤}�A~ < � �§¦ u v�¨ ] Ux ]"y z�]*© H _ ]Aa W#b�U,VXW}H-~oHY] U�'�0� H-� R Q +-G,H ��\ H¥+-G,H � � � � Z ) +-G"HY] U � � � /=/ � � � � Z ) +-G,HY] U � � � /=/%ªD s ) +-� � � ! �X/¬«4� � (2)

wherewe will refer to
� �

as the two-level optimal infinite horizon
discountedvalue function.

The secondfunctionalvaluedefinedasour objective function is'� +-G � � /�g 5 �h�{�� �  C¡ � �h�{�� £  C¡ £®�¯ �°�± ¤ 
² u v y x | ° MS&}�%~ < R ) +-G,HY] U � � � � Z ) +-G"HY] U � � � / �=[ Q /�� �
wherewe referto

 �
asthetwo-level optimalinfinite horizonaverage

value function. We can see that from the definition of the upper
level decisionrule, the decisionsto be madeat the upperlevel must
dependon thelower level state,which is theinitial statefor the lower
level MDP evolution over B -horizonin thefasttime-scale.Theinitial
state G"HY] U �=� 5�
 �  ������� is determinedstochasticallyby following the
policy [ Q . We will considerthemoregeneralcaseof determiningthe
initial statein a latersubsectionto expandtheflexibility of ourmodel.

1It is our assumptionthat the initial statefor the next epochin the slow
time-scaledoesnot contribute the reward for the previous epoch.However, a
terminalreward canbedefinedby a function over ³ , in which casewe need
to addthe terminal reward term in ´ ) .

We also remark that even though we addedthe immediatereward
function s ) in the definition of R ) to make our model description
morenatural,the function R Q can“absorb” the function s�) by newly
definingthefunction R Q itself as R Q +-G � � � ! �µ[ Q-/ D &@ s ) +-� � ! / for � 5
 and R Q +-G � � � ! �=[ Q-/ D�¶ &=M"·&=MX· U¹¸ s ) +-� � ! / for ��� � � 
 �
B. Optimality equations

For a given pair of � � �
and ! � � , define a set qºQ¬» � � !0¼ of

all possibleB -horizon(lower level) nonstationarypoliciesunderthe
fixed pair of the upperlevel state � andaction ! :q Q » � � !0¼ g 5 | [ Q » � � !0¼¾½½½ [ Q » � � !0¼ g 5 �{\ x y zHYI ���������^\ x y zH U"VXW �%�\ x y zH-f g 1¿i � � � i � ! � k 2

and c�5 �À��������� B��Á
 �
and let Â @v�Ã + [ Q » � � !0¼ / the probability that a state P � 1 is reached
by B -stepsstartingwith G by following the B -horizonnonstationary
policy [ Q » � � !0¼ . Note that this probability canbe obtainedfrom ( Q .

We now definean MDP that operatesin the slow time-scale� as
follows. The stateat time � is a pair of the lower level stateand
the upper level state, +-G,HY] U � � � / . An action at state +-G,HY] U � � � / is a
compositecontrol of ! � � � and [ Q » � � � ! � ¼ � q Q » � � � ! � ¼ (from our
assumptionthat

: �A@Ä5 � $ , [ Q » � � � !"�Å¼ will be taken slightly after! � is taken). Observe that we canview [ Q asone-stepactionat the
slow time-scale.More precisely, the admissibleaction set for state+-G,HY] U � � � / is definedas the setgiven byÆ + ! �=Ç /?. ! � � ��ÇÈ� q Q » � � � !0¼#É �
The transition probability from +-G,HY] U � � � / to +-G,H`_ ]Aa W#b�U � � �%$'& / is
determineddirectly from Â @ and ( ) . Then,from thestandardMDP
theory, for this MDP, we can write Bellman’s optimality equation
andan optimal decisionrule that achieves the uniqueoptimal value
at eachstatecanbederived.In otherwords,theupperlevel sequential
dynamicsis essentiallyjust an MDP with a reward function defined
via the lower level MDP dynamics.With a simpleadaptationof the
standardMDP theory(see,e.g,[1] [16] or [26]), thefollowing results
hold for MMDPs. Therefore,we omit proofs.

Theorem 1: For all G � 1 and � � �
,�4� +-G � � / 5 �h�{�z  AÊ ¦ �h���Ë £ Ì x y z�Í  ÅÎ £YÌ x y z�Í | R ) +-G � � � ! �=[ Q » � � !0¼ /D¾� }Ã  CÏ }Ð  AÑ Â @v�Ã + [ Q » � � !0¼ / ( ) +�Ò . � � ! / � � +-P � Ò / �¢«

and
� �

is the uniquesolution to the above equation.Furthermore,
for eachpair of G and � , let the argumentsthat achieve the r.h.s of
this equationas ! �

and [ � » � � !0¼,5 ��\ �H f � , andset Z ) +-G � � / 5Ó! �
forZ ) andset [ Q suchthat \ H f +-G � � � ! � / 5 \ �H f +-G � � � ! � / for Z Q . Thepair

of ZÀ) and Z Q achieves
� �

.
Theorem 2: If thereexistsaboundedfunction Ô definedover 1Li �

anda constantÕ suchthat for all G � 1 and � � �
,Õ D ÔX+-G � � / 5 �h�{�z  AÊ ¦ �h���Ë £ Ì x y z�Í  ÅÎ,£ Ì x y z�Í | R ) +-G � � � ! �=[ Q » � � !0¼ /D }Ã  AÏ }Ð  %Ñ Â @v�Ã + [ Q » � � !0¼ / ( ) +�Ò . � � ! / ÔX+-P � Ò /���« �

then thereexists a decisionrule pair of ZÀ) � p�) and Z Q � p Q that
achieves

 � +-G � � / and Õ�5  � +-G � � / for all G � 1 and � � �
.

For the conditionsthat make the “if” part of the above theorem
hold, refer to [1] or [16] for a substantialdiscussion.An optimal
decisionrule pair can be obtainedin a similar way to that statedin
Theorem1.
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Even though we assumedfinite state spaceswith finite ac-
tion spaces,Ö the issue of infinite/finite state/action space and
bounded/unboundedreward functioncanbediscussedfrom thewell-
known MDP theory (see,e.g., [1]).

C. Initialization function

So far we consideredthe case where G H ] U �=� 5×
 �  ������� is
determinedby a B -horizon nonstationarypolicy. Consideringthe
moregeneralmodel,we definean initialization function Ø suchthat
we determineor initialize G,HJ] U �µ� 5�
 �  �?����� by Ø . This is motivated
by the specificnatureof a given problemor organizingbehavior in
a hierarchy.

Here are some examplesof Ø . As before, Ø can be a function
defined over 1Ùi � i�� such that for given G � � � ! , Ø�+-G � � � ! / is
a probability distribution over 1 . Given G � 1 , � � �

and! � � , we will use the notation of Ø�+-G � � � ! / » PÅ¼ to denote the
probability definedon P � 1 by Ø0+-G � � � ! / . In the previous model
description,Ø�+-G � � � ! / » PÅ¼ correspondsto Â @v�Ã + [ Q » � � !0¼ / . We will also

usethenotationØ Ë £ to explicitly expressthedependenceon thelower
level policy [ Q if that is the case.Or Ø canbe definedsuchthat the
determinationof G,HY] U dependson the state G,HY] U0VXW . For example,
for some G � P � 1 , � � �

, ! � � ,Ø Ë £ +-G � � � ! / » PÀ¼,5 }Ú  CÏ Â @NMS&v Ú + [ Q » � � !0¼ /#Û +-P . T / �
where Û +-P . T / denotesthe probability that P succeedsT .

For somecases,theslow time-scaledecisions(e.g.,“reset” control,
etc.)only will affect thenew initial lower level state.In this case,Ø is
definedover 1Üi�� suchthat Ø�+-G � ! / givesa probability distribution
over 1 . Thevery ideaof this Ø is parallelto thetransitionstructurein
Markovian slowscalemodelgiven in [18]. Finally, the determination
of G,HY] U can be independentof G"HY] U MS& or G"H _ ] VXW#b�U , i.e., we can
considerthestatein the lower level be initialized basedon theupper
level currentstate � andthenext stateÒ . Ø is definedover

� i �
such

that Ø�+-� � Ò / for some� � Ò � �
givesa probability distribution over 1 .

With the introduction of Ø , we simply need to rewrite the
� �

equation(similarly to the
 �

case)by replacing ( @ with Ø in each
equation in Theorem 1 and 2. In particular, if the Ø -function is
independentof [ Q (or we will saythat the Ø -function is independent
of thelower level policies),thenwe canwrite theoptimality equation
for

� �
as� � +-G � � / 5 �h���z  %Ê | �h�{�Ë £ Ì x y z�Í ¦ R ) +-G � � � ! �µ[ Q /¬«D¾� }Ã  AÏ }Ð  %Ñ Ø0+-G � � � ! / » PÅ¼Ý( ) +�Ò . � � ! / � � +-P � Ò /�� �

This specialcaseis very interestingbecausethe optimal finite B -
horizon value at the lower level will act as a single-stepreward for
the upper level (along with an immediatereward). The upper level
decisionmaker in this casedirects/determinesa problemat eachtime
that the lower level decisionmaker needsto solve andthelower level
decisionmaker seeksa “local” optimal solution for the B -horizon
and follows one of the optimal nonstationarypolicies that achieve
thesolution.Thedecisionprocessof how to directa problemat each
time for the upperdecisionmaker will dependon the local optimal
performancemadeby thelowerdecisionmaker. In thissense,thecase
hasa flavor of the underlyingphilosophyof the Stackelberg (leader-
follower) game(see,e.g, [2]). This is not true in generalbecauseaØ -initialization functionmaydependon the lower level policy, where
in this casethe lower level decisionmaker needsto choosea policy
not only concernedwith the local performanceof the policy but also
effectsof the policy in the future performance.

We end this sectionwith a brief discussionon how to extend the
two time-scalemodel to

�
time-scalemodel with

� 	Þ . The
transitionstructureof a particularlevel ß dependson (in general)the
statesandthe actionsof the slower time-scalelevels ��� ß andthe
currentstateof ß , andthe reward function of the level ß is defined
with the statesand the actionsof the levels �L� ß , and an initial
stateand a policy of the ß D 
 level. From thesetransition/reward
functions,we can definethe multi-level optimal value function and
determinethe multi-level optimality equation.We note that for the
definitionof theinfinite horizondiscountedmulti-level optimalvalue,
the slowestlevel ( ß85�
 ) alwayshasthe discountfactorlessthan1.

IV. SOLVING MMDPS

The methodsof obtainingthe optimal decisionrule for eachlevel
in MMDPs are well-establishedvia the well-known MDP theory.
We will pay attention to the Ø -initialization function that depends
on the lower level policies and is definedover 1Ùi � i�� such
that Ø Ë £ +-G � � � ! / for G � 1 , � � �

, and ! � � gives a probability
distribution over 1 . The discussionherecan be easily extendedto
other Ø -functions.

A. Exactmethods

We first discussthe discountedcaseand then the averagecase.
Define an operator à such that for a (boundedand measurable)
function

�
definedover 1¿i �

,à�+ � / +-G � � / 5 �h�{�z  AÊ ¦ �h���Ë £`Ì x y z�Í  ÅÎ £YÌ x y z�Í | R ) +-G � � � ! �µ[ Q » � � !0¼ /D¾� }Ã  CÏ }Ð  AÑ Ø Ë £ +-G � � � ! / » PÅ¼Ý( ) +�Ò . � � ! / � +-P � Ò /��¢« (3)

for all G and � . Then, à is a � -contraction-mappingin sup-norm.
For any function

�
definedover 1ái �

, let â � â¹5Lã=äXå v y x . � +-G � � /?. .
For any boundedandmeasurabletwo function æ and

�
definedover1¿i �

, it is true thatâ?à�+#æ / ��à�+ � / â � � â?æç� � â �
This implies that

� �
is unique from the well-known fixed point

theorem.Furthermore,for any such
�

,à � + � / k �4�
as � kÞè �

wherethis methodis known asvalue iteration.
For the averagereward case,we assumethat (appropriatelymod-

ified) oneof the ergodicity conditionsin the page56 of [16] holds.
Then,averagereward value iteration can be also applied.Let é be
an operatorthat mapsa function

�
definedover 1Þi �

to another
function definedover 1¿i �

given byéK+ � / +-G � � / 5 �h���z  %Ê ¦ �h�{�Ë £ Ì x y z�Í  %Î £-Ì x y z�Í | R ) +-G � � � ! �=[ Q » � � !0¼ /D }Ã  CÏ }Ð  AÑ Ø Ë £ +-G � � � ! / » PÅ¼J( ) +�Ò . � � ! / � +-P � Ò /���« (4)

for all G and � . Then, with an arbitrary (boundedand measurable)
function

�
definedover 1¿i �

, for all G � 1 � � � �
,é � + � / +-G � � / ��é ��MN& + � / +-G � � / k¿Õ as � kÞè

andfor any fixed statepair P � 1 and Ò � �
,é � + � / +-G � � / ��é � + � / +-P � Ò / kÞÔ0+-G � � / as � kÞè � G � 1 � � � � �

We can also use “policy iteration” once Rº) is determined.See,
e.g.,[26]. The runningtime-complexity of valueiterationis in poly-
nomialin . 1 .�. � . , . � .�êJ. 2 . @Së Ï ë , and 
�ì�+µ
%� � / andin particularjustone
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iteration takes íî+=+ . 1 .�. � . / > êÅ. � .�êÅ. 2 . @Së Ï ë / . For policy iteration,just
doing “policy improvement”steptakes íî+=+ . 1 .�. � . / > êA. � .CêA. 2 . @Së Ï ë / .
See[20] for a detaileddiscussion,includingthestateandactionspace
dependenttime-complexity of the linear programmingapproachfor
solving MDPs. Therefore,applying the exact methodsfor solving
MMDPs is very difficult even with relatively small stateand action
spacesizes.In thenext two subsections,we studyapproximationand
heuristicmethodsto solve MMDPs.

B. Approximationmethods

There are numerousapproximationalgorithms to solve MDPs.
For details see the books by Puterman[26] or by Bertsekasand
Tsitsiklis [4]. In this section, we analyze the performanceof an
approximation-basedschemefor solving MMDPs.

Our first approximationis on the Ø -initialization function. Oneof
the main difficulties to obtain an optimal decisionrule pair would
be the possibledependenceof Ø on the lower level nonstationary
policies.Supposethat this is the caseandconsidera Ø n -initialization
function that is independentof the lower level policies and approx-
imatesthe given Ø Ë £ -initialization function with respectto a given
metric. Then thereexists a uniquefunction ï� �

definedover 1ði �
suchthat for all G and � ,ï�4� +-G � � / 5 �h�{�z  %Ê | �h�{�Ë £ Ì x y z�Í  %Î £-Ì x y z�Í ¦ R ) +-G � � � ! �=[ Q » � � !0¼ /¬«D¾� }Ã  CÏ }Ð  AÑ Ø n +-G � � � ! / » PÅ¼Ý( ) +�Ò . � � ! / ï� � +-P � Ò /�� � (5)

Note that ï� �
is the optimal value function for a new MDP defined

with the reward function of �h�{� +`R ) + ê /=/ and the transitionfunction
definedwith Ø n and (*) . We can boundthen . ï� � +-G � � / � � � +-G � � /?.
for all G and � by Theorem4.2 in Müller’s work [24] with a metric
called the “integral probability metric” on the differencebetweenØ n
and Ø Ë £ . Of course,if theMMDP problemto solve is associatedwith
the lower level policy independentØ -function,we wouldn’t needthis
approximationstep.

The secondapproximationis on the valueof R �
definedasR � +-G � � � ! / 5 �h���Ë £`Ì x y z�Í  ÅÎ £YÌ x y z�Í ¶ R ) +-G � � � ! �=[ Q » � � !0¼ / ¸

andon ï� � +-G � � / . It will beoften impossibleto get the true R �
dueto

a largestatespacesizeof thelower level anda relatively large B even
thoughtheoreticallywe canuse“backward induction”. Obtainingthe
truevalueof the function ï� �

is alsoalmostinfeasiblein many cases
with thesimilar reasons.Supposethatwe approximateR �

by ïR such
that ã=ä0åv y x y z . R � +-G � � � ! / �¿ïR�+-G � � � ! /?. ��ñ
and ï� �

by someboundedand measurablefunction æ definedover1¿i �
suchthat ã=äXåv y x . ï��� +-G � � / ��æ4+-G � � /?. � F?�

We will discussanexampleof such ïR and æ later in this subsection.
Now definea stationary(upperlevel) decisionrule Z ) suchthat for
all G � 1 and � � �

,Z ) +-G � � / � argmaxz  AÊ ¦ ïR�+-G � � � ! /D¾� }Ã  CÏ }Ð  AÑ Ø n +-G � � � ! / » PÅ¼Ý( ) +�Ò . � � ! / æ4+-P � Ò / « �

Our goal is to boundtheperformanceof thedecisionrule Z ) fromï� �
. We definethe value of following the decisionrule Z ) given an

initialization function Ø n as follows:ï� +-G � � / 5 u v y xò l�ó ¤}�A~ < � � ïR�+-G,HY] U � � � � Z ) +-G,HJ] U � �#� /=/�ô �
where we used (by abusing the notation)

u ò l to indicate thatG HY] U �=� 5õ
 �  ������� is a randomvariabledenoting(lower level) stateat
time

: �C@ determinedstochasticallyby Ø n . Wenow stateaperformance
boundasa theorembelow.

Theorem 3: If ã=äXå v y x y z . R � +-G � � � ! / � ïR4+-G � � � ! /?. � ñ andã=äXå v y x . ï� � +-G � � / ��æ4+-G � � /?. � F ,. ï�4� +-G � � / �Üï� +-G � � /?. �  �oFmD ñ
ö� � for all G � 1 and � � � �
Proof: Let the argumentthat achieves the maximumin the r.h.s

of Equation(3) with replacingØ Ë £ by Ø n be !N÷ for a function æ . We
will usethe notation à n for this replacement.From the contraction
mappingpropertyof the à n operator, for all G � 1 and � � �

,. à n +Xï��� / +-G � � / ��à n +#æ / +-G � � /?. � � ê ã=äXåv y x . ï��� +-G � � / ��æ4+-G � � /?. � �,F��
(6)

We show that . à n +#æ / +-G � � / �áï� +-G � � /?. ��ø�ùµ� &#$ ø �Y$�ú&=M ø for all G � 1
and � � �

. It then follows that from à n +0ï� � / 5ðï� �
,. ï� � +-G � � / �Üï� +-G � � /?. � . à n +Xï� � / +-G � � / �ûà n +#æ / +-G � � /?.D . à n +#æ / +-G � � / �8ï� +-G � � /?.� �oFSD �,F +µ
 D�� / D ñ
¹� � 5  �oFmD ñ
ö� � �

which gives the desiredresult.
Now, extending the proof idea of Theorem3.1 in [17] with the

given boundassumptionsand the boundof Equation(6), it can be
shown that for all üo5 �À� 
 �?������� and G � 1 � � � �

,à n +#æ / +-G � � / � uwv y xò l�ý Q}�%~ < � � ïR�+-G,HY] U � � � � Z ) +-G,HY] U � � � /=/ þD¾� Q $m& u ò l » à n +#æ / +-G H-_ £ a W#b�U � � Q $m& / ¼D¾�,F +µ
 Dû� / D ê?ê?ê D�� Q $'& F +µ
 D�� /D ñ +µ
 D���D ê�ê?ê D�� Q / � (7)

Since à n +#æ / is bounded,thesecondtermon ther.h.s.of Equation(7)
convergesto zero as ümkÿè and the first term becomes ï� +-G � � / by
the definition and the last two termssum to ø�ùµ� &#$ ø �Y$�ú&=M ø as ü�k è .

It follows that à n +#æ / +-G � � / �8ï� +-G � � / � ø�ùµ� &#$ ø �Y$�ú&=M ø . This proves the
upperboundcase.

As for the lower bound case,by the similar argumentsfor the
upperboundcase,we can then show that à n +#æ / +-G � � / � ï� +-G � � / d� ø�ùµ� &#$ ø �Y$Nú&=M ø . This concludesour proof.

We remark that a relatedwork for this theoremcan be found in
Corollary 1 in [30] with the assumptionof the finite statespaceand
the resultof the work only givesan upperbound.Our analysistakes
a totally different approachand can be appliedto Borel statespace
even though our proof shows for the countablecase.Furthermore,
the resultgivesnot only a lower boundbut alsoa tighter bound(the
upperboundgiven in [30] is

> ø�ù $ > ú&=M ø ). Oncewe bound
� � +-G � � / fromï� � +-G � � / by Müller’s work, we have a boundfor the optimal value

function valueof the original MMDP at G and � from ï� +-G � � / . Now
we give an exampleof ïR . From now on, we assumethat the lower
level reward function RºQ is definedsuch that it absorbstheupperlevel
immediatereward function s ) aswe discussedin the subsectionIII-
A. Our approximationusesa lower level policy [ Q thatguaranteestheB -horizon total expecteddiscountedreward of following the policy[ Q is within an error boundfrom the optimal finite-horizonvalue.
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The methodology of the example is the rolling horizon ap-
proach

�
[17] where we choosea horizon ��� B and solve for the

optimal � -horizon total expecteddiscountedreward and we define
a (greedy)stationarypolicy with respectto the value function. We
begin by defining � -horizon total expecteddiscountedreward with� 5�
 ��������� B for every given � � �

and ! � � :R �� +-G � � � ! / 5 �h���Ë £ Ì x y z�Í uwvx y z ó � MN&} H-~ < � H R Q +-G,H ��\ x y zH +-G,H � � � ! / � � � ! /�ô �
(8)

where �e� � � 
 and R �< +-G � � � ! / 5 � for all G � 1 . We also letR Ë £ +-G � � � ! / 5 RK)"+-G � � � ! �=[ Q » � � !0¼ / definedin Equation(1) for every� and ! with ��� � � 
 and R��	��
º5 �h�{� v y �Ay x y z RºQ¬+-G � O � � � ! / .
Proposition1: For every given � � �

and ! � � anda selected�
in � 
 ��������� B � , definea lower level stationarypolicy [ Q » � � !0¼ as\ x y z +-G � � � ! / � argmax�  � ¦ R Q +-G � O � � � ! /D � }Ã  CÏ ( Q +-P . G � O � � � ! / R �� MN& +-P � � � ! /¬« for all G � 1 �
Then,for all G � � � ! ,� � R � +-G � � � ! / ��R Ë £ +-G � � � ! / � R��	��
 � � +µ
¹� � @ /
¹� � �

Proof: The lower bound is from the definition of R �
. Fix

arbitrary � � �
and ! � � . Define an operator � that maps a

(bounded)function
�

definedover 1 to anotherfunction defined
over 1 given by

�º+ � / +-G / 5 �h����  � � R Q +-G � O � � � ! / D � }Ã  CÏ ( Q +-P . G � O � � � ! / � +-P /�� �
(9)

It is well-known that R �� 5�� � +`R �< / , where � � denotesthe succes-
sive applicationof the � operatorby � times (see,e.g., [26] [16],
etc.). By the contraction mapping property of � , (with â��'â�5ã=ä0å v y x y z . �S+-G � � � ! /?. ),â�R �@ �ûR �� â � � â�R �@�MS& �ûR �� MN& â� ê�ê�ê �Á� � â�R �@NM � ��R �< â� � � +µ
 D � D ê�ê?ê D � @NM � MN& / R��	��
� R �	��
 + � � � � @ /
¹� � � (10)

Following theproof ideaof Theorem3.1 in [17], we canshow that
for all � 5 ��� 
 ��������� BÁ��
 andfor all G � 1 ,R �� +-G � � � ! / � u vx y z ý��} H-~ < � H R Q +-G H �^\ x y z +-G H � � � ! / � � � ! / þD � � $m& u x y z » R �� +-G � $'& � � � ! / ¼ � (11)

We let � 5õBç�L
 . It follows then that from the previous inequal-
ity (11), for all G � � and ! ,R �� +-G � � � ! / � R Ë £ +-G � � � ! / D R��	��
 � @ +µ
¹� � � /
ö� � �
Therefore,we have that for all G � � and ! ,R � +-G � � � ! / �ûR Ë £ +-G � � � ! / � R � +-G � � � ! / �ûR �� +-G � � � ! /D R��	��
 � @ +µ
ö� � � /
¹� � �
Combiningthe result in Equation(10) with the previous inequality,
we finally have thatR � +-G � � � ! / �ûR Ë £ +-G � � � ! / � R��	��
 � � +µ
ö� � @ /
¹� � �

For every given ñ 	 � , letting ñ d������! ·#" � &=MX· U �&=M"· gives the
rolling horizon size for a desirederror bound for R �

. We remark
that by letting B9k è , the above result preciselygives the result
of Theorem3.1 in [17]. A similar approachcan be taken for the
upperlevel MDP. We canchoosea fixedrolling horizonfor theupper
level. The valuefunctiondefinedby thehorizonapproximatesï� �

in
Equation(5), i.e., an example of æ . If both levels use the rolling
horizonapproach,we have a two-level approximation.We caneasily
draw an error boundof the two-level rolling horizonapproachfrom
the resultsobtainedin this subsection.In practice,getting the true
valueof R �� will be alsodifficult even though � is small due to the
curseof dimensionality. A way of getting away with a large state
spaceis to usea samplingmethodto approximateR �� (see[19] [6]).

For the averagereward case,we considerthe casewhereone of
the ergodicity conditionsin the page56 of [16] holds.Furthermore,
we assumethat the similar approximationto the first approximation
for the discountedcaseis doneby a Ø n -initialization function that is
independentof the lower level policies.Thenthereexists a constantïÕ anda function ïÔ suchthat for all G and � ,ïÕ D ïÔX+-G � � / 5 �h�{�z  AÊ | �h���Ë £ Ì x y z�Í  ÅÎ £YÌ x y z�Í ¶ R ) +-G � � � ! �=[ Q » � � !0¼ / ¸D }Ã  CÏ }Ð  AÑ Ø n +-G � � � ! / » PÅ¼Ý( ) +�Ò . � � ! /ÀïÔ0+-P � Ò /��
and that . ïÕ��ÄÕ . is boundedwith respect to the degree of the
approximationby Ø n for Ø Ë £ .

We focus on the secondapproximationfor the averagecase.We
will denote R �� defined in Equation (8) with � 5 
 as $R �� and$R Ë £ 5ÓR ) +-G � � � ! �=[ Q¬» � � !0¼ / definedin Equation(1) with � 5õ
 , and
the operator � in Equation(9) with � 5 
 as $� . Supposethat we
approximate $R � + 5%$R �@ / by ïR asbeforesuchthatã=äXåv y x y z . $R � +-G � � � ! / � ïR4+-G � � � ! /?. ��ñ
andthat ïÔ is approximatedby somefunction æ definedover 1�i �
suchthat ã=ä0åv y x .¬ïÔX+-G � � / ��æ4+-G � � /?. � F��
Define a stationary(upper level) decisionrule ZÀ) such that for allG � 1 and � � �

,Z ) +-G � � / � argmaxz  AÊ ¦ ïR�+-G � � � ! /D }Ã  CÏ }Ð  AÑ Ø n +-G � � � ! / » PÅ¼Ý( ) +�Ò . � � ! / æ4+-P � Ò /¬« �
The valueof following the decisionrule Z ) given an initialization

function Ø n is definedas follows:ï +-G � � / 5 ®�¯ �°�± ¤ 
² uwv y xò lûó ° MS&}�%~ < ïR�+-G,HY] U � � � � Z ) +-G,HY] U � � � /=/�ô �
We now statea performanceboundasa theorembelow.

Theorem 4: Assumethat one of the ergodicity conditionsin the
page56 in [16] holds.If ã=ä0å v y x y z . $R � +-G � � � ! / �áïR�+-G � � � ! /?. ��ñ andã=äXå v y x .#ïÔ"+-G � � / ��æ4+-G � � /?. � F ,. ïÕ4�ðï +-G � � /?. �  F'D ñ for all G � 1 and � � � �

Proof: Let the argumentthat achieves the r.h.s of Equation(4)
with replacing Ø Ë £ by Ø n be ! ÷ for a function æ . We will use the
notation é n for this replacement.
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Now, for all G � 1 and � � �
,é n +#æ / +-G � � / 5 $R � +-G � � � ! ÷ /D }Ã  AÏ }Ð  %Ñ Ø n +-G � � � ! ÷ / » PÅ¼J( ) +�Ò . � � ! ÷ / æ4+-P � Ò /

by the definition of é n� ïR�+-G � � � !N÷ / D ñD }Ã  AÏ }Ð  %Ñ Ø n +-G � � � !N÷ / » PÅ¼J( ) +�Ò . � � !N÷ / æ4+-P � Ò /
by the given assumption� ïR�+-G � � � Z ) +-G � � /=/ D ñD }Ã  AÏ }Ð  %Ñ Ø n +-G � � � Z ) +-G � � /=/ » PÅ¼Ý( ) +�Ò . � � Z ) +-G � � /=/ æ4+-P � Ò /
by the definition of Z ) �

Under the ergodicity assumption,thereexists a stationaryproba-
bility distribution Â over 1 i �

for the inducedMarkov chain byZÀ) . Summingboth sideswith respectto Â at the last inequality of
the above equations,we have that} v y x Â +-G � � / é n +#æ / +-G � � / � } v y x Â +-G � � / ïR�+-G � � � Z ) +-G � � /=/D ñ D } v y x Â +-G � � / ¦ }Ã  AÏ }Ð  %Ñ Ø n +-G � � � Z ) +-G � � /=/ » PÅ¼i�( ) +�Ò . � � Z ) +-G � � /=/ æ4+-P � Ò / « � (12)

The first term on the right side is equal to ï +-G � � / by Lemma
3.3 (b.ii) in [17], and the third term on the right side is equal to& v y x Â +-G � � / æ4+-G � � / from the invariancepropertyof Â .

Observe that if . ïÔX+-G � � / ��æ4+-G � � /?. � F for all G � 1 and � � �
,

then . é n + ïÔ / +-G � � / ��é n +#æ / +-G � � /?. � F for all G � 1 and � � �
. This

implies that for all G � 1 and � � �
,é n + ïÔ / +-G � � / � ïÔX+-G � � / �� F � é n +#æ / +-G � � / ��æ4+-G � � /� é n + ïÔ / +-G � � / � ïÔX+-G � � / D  F?�

Therefore, rearrangingthe terms in Equation (12) and from the
previous observation,ï +-G � � / D ñ d } v y x Â +-G � � / » é n +#æ / +-G � � / ��æ4+-G � � / ¼d } v y x Â +-G � � / » é n +CïÔ / +-G � � / �ÄïÔX+-G � � / ¼0�� F5 ïÕw�� F?�
With the similar arguments,we can also show that ï +-G � � / � ñL�ïÕ D  F .

We now provide a counterpartresult to Proposition 1 for the
undiscountedcase( � 5�
 ) underan ergodicity assumption.

Define ' g 5 � +-G � O /?. G � 1 � O � 2 � . For every given � � �
and! � � , we define R Q +)( � � � ! /wg 59R Q +-G � O � � � ! / and ( Q +-P . ( � � � ! /wg 5(*Q#+-P . G � O � � � ! / for all ( � ' .

Assumption1: Thereexists a positive number* � 
 suchthat for
every given � and ! ,ã=äXå+ y + l  -, }Ã  CÏ . ( Q +-P . ( � � � ! / �û( Q +-P . ( n � � � ! /?. � .* �

We give a performancebound of the rolling horizon policy in
terms of spansemi-norm;for a boundedfunction

�
definedover1¿i � i � andfixed � � �

and ! � � (with abusing the notations),
sp+ � / 5çã=ä0å v � +-G � � � ! / � ¯0/21 v � +-G � � � ! / .

Proposition2: Assumethat the ergodicity condition 1 holds.For
every given � � �

and ! � � anda selected� in � 
 ��������� B � , define
a lower level stationarypolicy [ Q as\ x y z +-G � � � ! / � argmax�  � ¦ R Q +-G � O � � � ! /D }Ã  AÏ ( Q +-P . G � O � � � ! / $R �� MS& +-P � � � ! / « for all G � 1 �
Then,for all � and ! ,

sp+�$R � �3$R Ë £ / � B ê .* � MS& R��	��

§�4* D �+5* � �4* @ / R��	��
+µ
ö�6* / >
Proof: We begin with a slightly modified version of Theorem

4.8(a)[16] by Lemmabelow. Seethe proof there.
Lemma1: Assumethattheergodicity condition1 holds.For every

given � � �
and ! � � and �t5�
 �?������� B , thereexists a constantÒ �

suchthat for all G � 1 ,

(a) $R �� +-G � � � ! / �7$R �� MS& +-G � � � ! / d M�8�" VXW �����! &=M98 D Ò �
(b) $R �� +-G � � � ! / �7$R �� MS& +-G � � � ! / � 8 " VXW � ���! &=M98 D Ò �

Fix � and ! . Let Û,& 5 M�8�" VXW �9���! &=M98 D Ò �
and Û > 5 8�" VXW ���:�; &=M98 D Ò �

.
With a similar reasoningin the proof of Proposition1 and with the
inequalityin Lemma1(a),wecandeducethatfor all �L5 �À� 
 �?������� Bw�
 andfor all G � 1 ,

$R �� +-G � � � ! / � uwvx y z ý �} H-~ < R Q +-G"H ��\ x y z +-G,H � � � ! / � � � ! / þD u x y z »�$R �� +-G � $m& � � � ! / ¼0��+)� D 
 /#Û,& �
We let � 5�B��û
 . It follows thenthat from the previous inequality,$R �� +-G � � � ! / � $R Ë £ +-G � � � ! / D u x y z »<$R �� +-G @ � � � ! / ¼X�;B Û,& �
By the samearguments,we have that$R �� +-G � � � ! / d=$R Ë £ +-G � � � ! / D u x y z »<$R �� +-G @ � � � ! / ¼X�;B Û > �
Combiningthe above two inequalities,it follows that

sp+ $R �� �ûR Ë £ / � B�+ Û > � Û & / 5�B ê >* � MN& R �	��

ö�6* � (13)

Now, from the spansemi-normcontractionpropertyof $� [16], we
have that

sp+?$R �@ �@$R �� / � * sp+�$R �@NMN& �@$R �� MN& / � ê�ê?ê � * � sp+�$R �@NM � / � (14)

From Lemma1, we canalsodeducethat for all G � 1 ,� R �	��
 +µ
§�4* � /+µ
ö�4* / > D �ÅÒ � � $R �� +-G � � � ! / � R �	��
 +µ
§�4* � /+µ
ö�4* / > D �ÅÒ � �
Therefore,sp+?$R �@NM � / � > �����! � &=M98 U,V "A�� &=M98?�BA . CombiningEquation(13)
and(14) with the previous inequality, we have the desiredresult:

sp+C$R � �7$R Ë £ / � B ê >* � MS& R �	��

ö�4* D À+5* � �6* @ / R �	��
+µ
ö�4* / > � (15)

We remark that the above result also gives a bound on the
finite horizon average reward by dividing the both hand sides of
Equation(15) by the horizon B . In particular, the result by lettingBLk�è in thiscasedoesnotcoincideexactlywith theresultobtained
in Theorem5.1 in [17] — our resultis looseby a factorof 2 in terms
of spansemi-normeven though the upper bound part in Theorem
5.1 would be the same.This is becausethe lower bound on the
result of Theorem5.1 is 0 incorporatingthe fact that the infinite
horizon averagereward of any stationarydecisionrule is no bigger
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than the optimal infinite horizonaveragereward, wherewe couldn’t
take advD antageof the fact in our proof steps.

Supposethatwe have a lower level policy dependentinitialization
function andwe now know that the setof local optimal lower level
policiesthat solve the lower level MDP problemfor given � � �

and! � � . As we can observe, a lower level decisionrule determined
from thesepolicies doesnot necessarilyachieve the optimal multi-
level valuebecauseit is a locally optimalor greedychoice.However,
solving the optimality equationgiven in Theorem1, for example,is
difficult becausethe sizeof the set q Q » � � !0¼ is often huge.We should
somehow utilize the fact that we know the local optimal lower level
policies.To illustratethis,we studythediscountedcaseonly. For this
purpose,let q � » � � !0¼ be the setof [ Q » � � !0¼ ’s that solve the lower level
MDP problemfor given � � �

and ! � � , i.e., achieving R �
. We

thendefinea pair of upperandlower level decisionrules, EZÀ) and EZ Q ,
from the argumentsthat achieve the following equation:�h���z  %Ê ¦ �h�{�Ë £ Ì x y z�Í  %Î9F Ì x y z�Í | R ) +-G � � � ! �=[ Q » � � !0¼ /D¾� }Ã  CÏ }Ð  AÑ Ø Ë £ +-G � � � ! / » PÅ¼Ý( ) +�Ò . � � ! / � � +-P � Ò /���«
such that we set EZÀ),+-G � � / 5GE! and set Z Q 5 � E[ Q � , where E! andE[ Q¬» � � E!�¼ are the argumentsthat achieve the above equation.We let
the two-level valueof following the pair of EZ ) and EZ Q be E� +-G � � / . It
is left for the readerto checkthat for all G and � with ��� � � 
 ,� � �4� +-G � � / � E� +-G � � / � �?H R��	��
0+µ
ö� � @ /+µ
ö� � / +µ
ö� � / �
where H is an ergodicity coefficient suchthat for any G � G n and � � � n
andfor any ! � ! n andany [��=[ n � q Q ,}Ã  CÏ }Ð  AÑ ½½½½½ Ø Ë +-G � � � ! / » PÅ¼J( ) +�Ò . � � ! /

�¹Ø Ë l +-G n � � n � ! n / » PÅ¼Ý( ) +�Ò . � n � ! n / ½½½½½ �  H
with �î��H�� 
 . Note that we can define EZ ) and EZ Q with respectto
a boundedvaluefunction æ thatapproximates

� �
anddraw anerror

boundfrom
� �

by using the above resultwe just have drawn.

C. Heuristic on-line methods

The discussionso far dealt with “off-line” methodsfor solving
MMDPs.Eventhoughvariousapproximation/exactalgorithmscanbe
appliedfor somecontrolproblems,it will oftenrequireanalyzingand
utilizing certainstructuralpropertieson the problems,which might
be very cumbersomein many interestingproblems.In this section,
we briefly discusshow to apply previously publishedtwo on-line
(sampling-based)heuristictechniquesin the context of MMDPs.

The first example approachcalled “(parallel) rollout” is based
on the decision rule/policy improvement principle in the “policy
iteration” algorithm (see,e.g., [3] [8] [9]). We simulateor rollout
heuristic decision rule(s) available in on-line manner via Monte-
Carlo simulationat eachdecisiontime and usethe estimatedvalue
of following the heuristicdecisionrule(s)to createan (approximate)
improved decisionrule with respectto the heuristicdecisionrule(s).
In particular, parallelrollout is useful if samplepathscanbe divided
in a way that a particularheuristicdecisionrule is near-optimal for
particular systemtrajectories.The parallel rollout methodyields a
decisionrule that dynamicallycombinesthe multiple decisionrules
automaticallyadaptingto different systemtrajectoriesand improves
the performancesof all of the heuristicdecisionrules.

We briefly discusshow to apply the rollout. Supposethat we
have a heuristic decision rule pair of ZÀQ for the lower level andZÀ) for the upper level. At eachdecisiontime � (in the slow time-
scale),we measurethe utility of taking eachcandidateaction ! � �
as follows. We take a candidateaction (in an imaginary sense)
and then from the next step, we simulate Z Q and ZÀ) over a finite
samplinghorizon over many randomlysimulatedtraces,giving the
approximatevalue of following the decisionrule pair. The single-
stepreward of taking action ! associatedwith the lower level quasi-
steadystateperformanceis alsoestimatedby simulationby following
the decision rule Z Q . The sum of the estimatedsingle-stepreward
(plus the immediatereward of taking ! ) plus the estimatedvalueof
following the decisionrule pair Z Q and Z ) gives the utility measure
of the candidateaction ! . At eachtime � , we take the action with
the highestutility measure.At the fasttime-scale,we just follow the
decisionrule ZÀQ .

The (parallel) rollout approachcan be referredas a lower bound
approachas the valueof following any decisionrule pair is a lower
bound to the optimal value. On the other hand, the next example
called “hindsight optimization” [10] is basedon an upper bound.
Hindsight optimization can be viewed as a heuristic method of
adaptingthe(deterministic)optimal sample-pathbasedsolutionsinto
an on-line solution. Insteadof evaluating a decision rule pair by
simulationasin the rollout, for eachrandomtraceof thesystem,the
optimal action sequencethat maximizesthe reward sumis obtained.
Theaverageovermany randomtraceswill giveanupperboundon the
optimal value.We usethe upperboundin the actionutility measure.
Thehindsightoptimizationapproachturnsout to beeffective in some
problems(see,e.g.,[7] [35]) even thoughthe questionof when this
approachis useful is still open.However, we notethataslong asthe
rankingof the utility measuresof candidateactionsreflectswell the
trueranking(especiallythehighestone),theseheuristicmethodscan
be expectedto work well.

V. RELATED WORK

In this section,we compareseveral key papersthat canbe related
with our work in hierarchical modeling. We first discussa key
paperby Suttonet al. [31] becausethe papercitesalmostall of the
hierarchicalMDP works in (at least)artificial intelligenceliterature
andsomein thecontrol literatureandgeneralizestheprevious works
by one framework. For many interestingdecision problems(e.g.,
queueingproblems), the state spacesin different levels, ( 1 and�
), arenon-overlapping.Sutton’s work considersa multi-time MDP

model in the dimensionof the action spaceonly (action hierarchy)
by defining “options” or “temporally extended” actions.The state
spacesin different time-scalesare the samein Sutton’s model and
the option doesnot determineor changethe underlying reward or
statetransitionstructure.On the otherhand,in our model,the upper
level action ! � � is not temporallyextendedactionfrom the action
spaceof thelower level MDPsbut is acontrolat its own right. Wecan
roughly saythat the lower level policiesdefinedover differentupper
level stateandcontrolsaresemi-Markov options[31] thatdependon
the upperlevel stateandaction.

A similar hierarchicalstructurein the dimensionof only action
spacewas studiedin the Markov slowscalemodel and the delayed
slowscaleModel by Jacobsonet al. [18]. They considertwo level
action hierarchy, where the upper level control is not necessarily
an option. However, the upper level control does not changethe
transitionand reward structureof the whole B -horizonevolutionary
process.

The recentwork by Ren and Krogh on multi-mode MDPs [27]
studiesa nonstationaryMDP, where a variable called the system
operatingmodedeterminesan evolution of the MDP. However, the
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transitionof the modesoperateswith the sametime-scalewith the
lower leI vel MDP, makingthewholetransitiondynamicsof thesystem
operatesin theonetime-scaleandtherewardstructureis definedover
the one time-scale.It is our fundamentalassumptionthat the upper
level decisionmakingprocessoperatesin a differentandslower time
scalethanthe lower level.

Even though the situation being consideredis totally different,
Pan and Basar’s work [25] considersa classof differential games
that exhibit possiblemulti-time scaleseparation.Given a problem
defined in terms of a singularly perturbed differential equation,
differently time-scaledgamesareidentifiedandeachgameis solved
independentlyandfrom this a compositesolutionis developed,which
is an approximatesolution for the original problem.In our model,
the upper level MDP solution must dependon the solution for the
lower level MDPs.Finally, aswe mentionedbefore,we canview our
model as an MDP-basedextensionor a generalizationof Trivedi’s
hierarchical performability and dependabilitymodel. In Trivedi’s
work, the performancemodels(fast time-scalemodel) aresolvedto
obtainperformancemeasures(in ourmodel,thismeasurecorresponds
to the function valueof R �

with the lower level policy independentØ -function). These measuresare used as reward rates which are
assignedto statesof the dependabilitymodel (slow time-scale).The
dependabilitymodelis thensolvedto obtainperformabilitymeasures.
The lower level is modeledby a continuous-timeMarkov chainand
theupperlevel is modeledby a Markov rewardprocess(alternatively,
generalizedstochasticpetri network can be used).We can seethat
if we fix the upper level and the lower level decisionrules in our
modelwith the lower level policy independentØ -function,anMMDP
becomes(roughly) the modeldescribedby Trivedi — in our model,
the lower level model is alsoa Markov reward/decisionprocess.

VI . CONCLUDING REMARKS

In the evolutionary processof MDPs, the outcomeof taking an
action at a state is the next state. Usually, the matter of when
this outcomeis known to the systemis not critical as long as the
systemcomesto know the next statebeforethe next decisiontime.
However, this might bean issueon theMMDP model.In our model,
we assumedthat the next stateat the upper level is known at the
nearboundaryof the next time step(refer Figure 1), which is quite
reasonable(we believe). If the effect of taking an action ! � � at a
state � � �

is immediate,which is the next stateÒ � �
, ( Q +-P . G � � � ! /

will bepossiblygivenas ( Q +-P . G � Ò / . This issueis theproblemspecific
matterandneedsto be resolved by the systemdesign.

We made the assumptionthat action spacesat all levels in the
hierarchyare distinct. Even thoughwe believe that this is a natural
assumption,we speculatethat for someapplications,someactions
might be sharedby different levels. Our assumptioncan be relaxed
(with addedcomplexity to themodel)sothatsomeactionsareshared
by differentlevelsaslong asany actiontakenat a statein a level does
not affect the higher level statetransitions.Developing a model for
thecasewherea lower level actionaffectsthehigherlevel transitions
(in a different time-scale)is still an openproblem.

An extensionof our model into a partially observableMMDP is
straightforward becausea partially observable MDP can be trans-
formed into an MDP with information statespace(see,e.g., [1]).
We restrictedthe MMDP formulationto discrete-timedomainin the
presentpaper. Extendingthemodelinto a continuous-timedomainin
parallel to semi-MDPwould not be difficult, wherein particular, in
this casethedecisionepochB at theupperlevel would bea bounded
randomvariable.

Finally, it wouldbeinterestingto extendourmodelinto theMarkov
gamesettingsmakingmulti-time scaledMarkov games.The“optimal

equilibrium value of game” over a finite horizon at the lower level
gamewill be usedasone-stepcost/reward for the upperlevel game.
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