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Abstract— In this work we introduce a new mathematical tool
for optimization of routes, and topology design in wireless sensor
networks. We introduce a vector field formulation that models
communication in the network, and routing is performed in the
direction of this vector field at every location of the network.
The magnitude of the vector field at every location represents
the density of amount of data that is being transited through
that location. We define the total communication cost in the
network as the integral of a quadratic form of the vector field
over the network area. Our mathematical machinery is based
on partial differential equations analogous to the Maxwell’s
equations in electrostatic theory. We use our vector field model
to solve the optimization problem for the case in which there are
multiple destinations (sinks) in the network. In order to optimally
determine the destination for each sensor, we partition the
network into areas, each corresponding to one of the destinations.
We define a vector field, which is conservative, and hence it can
be written as the gradient of a scalar function (also known as a
potential function). Then we show that in the optimal assignment
of the communication load of the network to the destinations, the
value of that potential function should be equal at the locations
of all the destinations. Also, we show that such an optimal
partitioning of the network load among the destination is unique,
and we give iterations to find the optimal solution.

I. INTRODUCTION

Wireless sensor networks have been studied extensively in
recent years. Such networks are made up of several hundred
to several thousand sensors distributed in a geographical
area. There are many different applications for such networks
including military, environment monitoring, agriculture and
home applications. Sensors are very simple identical electronic
devices equipped with a processor and small memory, a trans-
mitter, and a receiver. Generally, sensors use radio frequency
channels for the purpose of communication.

Most of the time it is desired to collect the data acquired by
all sensors in a specific destination for processing, archiving
and other purposes. This station is a data sink, and it has
enough processing power, storage space, and capability of
communicating with the sensors. For the purpose of commu-
nication to this destination, the sensors relay the packets of
each other in a multi-hop way.

In order to solve the routing problem in a wireless network,
we introduce an optimization problem based on a vector field,
which represents the communication load at every place of
the network, and it is conservative under certain assumptions.
By using this conservative vector field, we define a tool for
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routing by writing the conservative vector field as the gradient
of a scalar potential function. Routing of packets to each
destination is done based on the value of this potential function
on each node and its value on the neighboring nodes. In [1]
and [2] we used a above vector field model to solve the routing
problem in a single-sink scenario in which many sources are
intended to send their data to a single destination. In this paper,
we extend the approach to the case in which we have several
destinations (sinks) in the network. The optimization problem
in single destination scenario is finding efficient routes to
that destination; however, in the multiple destination scenario,
the problem is finding efficient routes from sensors to the
destinations, as well as finding the optimal partitioning of the
network area into regions corresponding to the destinations.
Each destination collects all messages generated in its region.

We introduce a mathematical machinery based on partial
differential equations very similar to the Maxwell’s equations
in electrostatic theory. In our formulation, sources of infor-
mation are similar to the positive charges in electrostatics, the
destinations are similar to negative charges, and the network is
similar to a non-homogeneous dielectric media with variable
dielectric constant (or permittivity coefficient).

One application of our methodology is to provide an opti-
mal network partitioning algorithm into several regions. Each
region has a destination inside it, which the wireless nodes
inside that region communicate with. Given the geographic
information of the communication demand in an area of the
network, we give an optimal method for assigning the load of
the network to the different destinations. We mathematically
prove that in order to minimize a quadratic cost function of
communication load, the value of potential function should be
equal in the locations of all destinations.

The routing problem in sensor networks has been studied
by many researchers. Sequential Assignment Routing (SAR) is
proposed in [3], and it takes into account the energy constraints
by making a tree rooted in the destination. Minimum Cost
Forwarding Algorithm for Large Sensor Networks is proposed
in [4]. Similar routing schemes can be found in [5] and
[6]. Some approaches have been offered in which partial
information about the node location is assumed to be known
[71.[8],[9]. The routing approach proposed in [8] assumes
some of the nodes in the network can serve as location proxies,
and these nodes collect and forward the packets of their
neighboring nodes that do not have their location information.

The idea of using a routing methodology in sensor networks
inspired by the way the electrostatic field propagates in a



dielectric medium was first introduced in our works [2], and
[1]. Our work was followed by related work by Toumpis
and Tassiulas [10], where they have shown that the approach
minimizes the number of sensors required to handle the total
communication burden of the network. A different approach
that uses multipath routing based on electrostatic force is
described in [11]. Surveys on the routing schemes of sensor
networks have been given in [12] and [13]

The main contributions of our work are:

o Formulating of the communication load in a sensor
network as a vector field.

« Introducing an optimization problem for minimizing the
communication cost in a sensor network. This cost func-
tion leads to the solution in form of partial differential
equations analogous to Maxwell’s equations in electro-
static theory.

¢ Optimally solving the problem of assigning the network
load among destinations.

The remainder of this paper is organized as follows: in Section
IT we give the background and introduce the basic formulation
of communication load as a vector field for the case with one
destination. In Section III we generalize the approach to the
case with multiple destinations. Some clarifying examples and
experiments are given in Section IV, and paper concludes in
Section V.

II. BACKGROUND: VECTOR FIELD FORMULATION FOR
THE SINGLE DESTINATION CASE

In this section, we show the main framework of routing
problem in sensor networks as an optimization problem. Con-
sider a network of IV wireless sensors that can communicate
with each other through radio links. The nodes are densely
located in a region A in the plane, and they are intended
to collect information about the events in the area of the
network. Each sensor is responsible for events happening in
its neighborhood. All messages are desired to be collected in
a destination node (access point), and for now, we assume
there is only one node of this type in the network. Later, we
generalize our approach to the case in which we have multiple
destinations. When an event is generated at some place in the
network, the closest sensor to location of the event generates a
message. All messages should be sent to the destination, which
is assumed to have enough storage, energy and processing
power. Furthermore, we make the following assumptions:

A1l: The messages in the geographical area of the network
happen with a known spatial density rate denoted by r(z,y) >
0 for the place (z,y). r(z,y) states how many messages are
generated per unit of area per unit of time. We call this quantity
the load density, which means that for the area a C A the rate
of messages generated inside a is:

wla) = [ r(a.y)dody 0

in which integration is over area a. Note that r(x,y) does
not include messages passing through a on their path to the
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Fig. 1. The illustration of Upstream Area of a given set L. The Shaded area
in this figure shows the upstream area of the rectangle shown as L

destination. The units of r(z, y) are messages per square meter
per second.

A2: For the purpose of routing, a single-valued direction is
kept for every point (z,y) of the network. At place (z,y), this
quantity represents the direction in which a message travels
along the forwarding sensors from its source sensor to the
destination; the message may be generated at place (x,y), or
received from an upstream place of the network. For place
(z,y) of the network, we denote this direction by the unit
vector 6(x,y). The value of O(z,y) is not defined for the
location of the destination.

The above assumption implies that for every location of the
network there exists a single path between that location and
the destination. Mathematically, we define a path as a directed
curved line starting at (z,y) and ending at the destination. Let
p(x,y) denotes the set of points in A that belong to this path.
Note that based on assumption A2 the paths have the suffix
property, which means if the path of a point (z,y) passes
through a point (2',y’), then the path of (2’,y") coincides
with the reminder (suffix) of the path from (z,y).

It should be noted that the chosen paths are not constrained
by the location of intermediate sensors. Instead, the paths are
abstract paths in the plane that represent desired paths for
the transmission of messages. For communication to occur,
we need to define the routes in terms of the paths. Another
important note is connection between the paths and routes. We
define a route as a sequence of sensor nodes starting at a sensor
and ending at the destination In order to find a route from a
sensor to the destination, we approximate the path starting
at the location of the sensor by a piecewise linear path with
sensors in its vertices. This approximation is justified if we
assume sensors are distributed dense enough in the area of the
network. However, if sensors are not dense enough in certain
areas, such areas will be considered as places with limited
resources and we can adapt the framework by penalizing
the traversal of such areas. (The weighting function K (z,y)
introduced later would take large values for these areas.)

Given a set of abstract paths for each location (z,y), for a
connected set L in A, we define the notion of Upstream Area,



a(L) as:

a(L) ={(z,y) € A s.t. 3 (2',y') € Land (z/,y') € p(z,y)}

2
The concept of upstream area is illustrated in Fig. 1. Next,
we define a vector field on A which we refer to as the load
density vector field and denote by D. Given a point (z1,%1) €
A, we choose a small line segment L containing (z1,y;),
and perpendicular to 6(z1,y1). The magnitude of the load
density vector field is the density of messages passing through
L, which can be written as the ratio of all load generated in
the upstream area of L divided by the length of L:

= . 9($1,yl)
D = lim 2V
(x1,91) |L1\IEO I

[ ey o
a(L)
It is important to note that |D(xy1,y;)| is the sum of the
communication load of all the paths that pass through L. So
|D(1,y1)| represents the actual amount of communication ac-
tivity at point (z1, y1). The direction of 5(331, Y1) is 9(951, Y1)s
which is the single valued direction on which the traffic at
point (z1,y1) is forwarded according to assumption A2.
Finally, we define a scalar function p(z,y) on the network.
This function represents the spatial density of rate at which
the messages are generated in the network. This quantity is
a function of location, and obviously p(z,y) = r(x,y) for
(z,y) # (x0,y0), in which (xg,yo) is the location of the
destination. However, since all messages end at the destination,
the density of the rate has a Dirac delta form at the location
of the destination. Hence:

“4)

in which wy, the weight of delta function, is the integral of
r(x,y) in the network area (i.e., wo = [, r(z,y)dxdy). This
definition implies that [, p(z, y)dzdy = 0.

The definition of D(z,) given by equation (3) satisfies:

% D-dn= / p(x,y)dxdy
c 5(C)

in which the integral is over a closed contour C, dn is a
differential vector normal to that contour at each point of its
boundary and pointing to outside of the counter, dot represents
the inner product of vectors in two-dimensional space, and
S(C) is the area surrounded by the closed contour C'. Equation
(5) is analogous to Gauss’ law in the electrostatic theory, and it
has a very simple explanation: the rate at which the messages
exit a contour is the net amount of the sources inside that
contour.

With the above definition of p(z,y) and D(z,y) equation
(5) can be expressed in partial differential equation form:

p(x,y) =r(x,y) — wod(x — 20)d(y — yo)

®)

— —

where V is defined as:
= 0 ~ O ~
_ 9. 0= 7
\Y Eriias a5’ @)

in which x and y are the variables in the Cartesian coordinate
frame, and 7 and J represent the unit vectors along z and y axes
respectively (ﬁ~ is also known as the divergence operator).
Depending on how we select the set of paths, the value of
(z,y) is different, but independent of path selection method,
(z,y) satisfies the following equations:

D, (z,y) =0 for (x,y) € Boundary of A

D
D

®)

in which A denotes the geographical set that contains the
network and D, (z,y) denotes the normal component of
5(x,y) on the boundary of A. The first equation in (8) is
the natural limitation imposed by the fact that all the traffic
generated at the network should be delivered to the destination.
The second equation comes from the fact that no load is
desired to exit the geographical area of the network or enter
into it through the boundary. It is important to notice that
equations (8) do not give D(z,y) uniquely.

Conversely, if we have a Dq(:r7 y) that satisfies equations (8),
we can find the path that can be used to send the traffic of each
point (z,y) to the destination. In order to define the routes
based on the values of ﬁ(x, y), we need to define the concept
of load flow lines. These lines are similar to the electric flux
lines in electrostatic theory [14] [15][16]. The load flow lines
are a family of curved lines that are always tangent to the
direction of ﬁ(x, y) and their orientation is the same as the
orientation of D(x, ). The load flow lines always end at the
destination; this fact is because the value of divergence in
equations (8) is nonnegative at every place of the network,
except it is negative at the destination.

Based on the definition of the load flow lines, the path
corresponding to each point (z,y) can be easily found as the
flux lines of the load density vector field, and finally é(x, Y)s
can be written as:

0(z,y) = D(z,y)/|D(z,y)|. )

Since (8) does not specify D(z,y) uniquely, the remaining
issue is to decide what additional condition(s) to place on
5(:5, y) so the resulting vector field generates a desirable set
of routes. The intuition we follow is that by making D as
uniform as possible, we obtain routes that cause the traffic
to be highly dispersed throughout the network. In turn, this
decreases both node congestion and collisions and leads to
high throughput.

Spreading the network communication load can be formu-
lated as minimizing the following quadratic cost function:

IB) = [ 1Bla,y)l dudy (10)

A

The quadratic form of the cost function in equation (10)
causes the load to be distributed as uniformly as possible.
It prevents having high loads somewhere in the network
while the resources are underutilized somewhere else. One
interesting fact about this cost function is that it is similar
to the definition of energy in electrostatic theory. The above



optimization problem can be summarized as:

. . 2
Minimize J(D) = [, |D(z,y)| dzdy
Subject to:

V- D(z,y) = pl.y)
D, (z,y) =0, ¥(z,y) € Boundary of A

The following result is proved in [1], and it gives the key to
finding the solution of the optimization problem of (11):

Theorem 1: If D* (z,y) denotes the optimal solution of
equation (11), then it satisfies:

V x D*(z,y) =0 (11)

In the above equation Vx is the two dimensional curl
operator, and it is defined in the following way for a vector
field F' = [F, F,]:

_OFy(z,y) n OFy(z,y)
oy ox

V x F(z,y) = ( ko (12)
in which IE: is a unit vector perpendicular to 7 and J. More
precisely, k =1 x j.

Based on the result of Theorem 1, we can write a set of
partial differential equations for the optimal D*(x,y):

. 13
V x D*(xz,y) =0 (13)

A more general case of stating the above optimization
problem is to add a scalar function K (x,y) as the coefficient
of the integrand in cost defined by (11):

Minimize J(D) = [, K(x,y)\D_'(x,yﬂ2 ds
Subject to:
D, (z,y) =0 (x,y) € Boundary of A

In this case K (z,y) takes into consideration the cost of routing
through point (z,y) of the network. In [2] we have used
K (z,y) for energy efficient routing, and in that work, K (z,y)
takes high values in the regions of the network with low
residual energy sensors. The following theorem provides the
key to finding the solution of the optimization problem defined
by (14).

Theorem 2: If D* (z,y) denotes the optimal solution of
equation (14), then it satisfies:

V x E*(z,y) =0 (14)

in which

E*(z,y) = K(z,y)D*(z,y) (15)

The proof of the above theorem can be found in [2]. Based
on the result of Theorem 2, we can write a set of partial
differential equations for the optimal D*(z,y) and E*(z,y):

V x E*(z,y) =0
The set of equations given by (16) is analogous to Maxwell’s
equations in the electrostatic theory. In this analogy, E*(x,y)

is analogous to the electric field density, D+ (z,y), is analogous
to the electric displacement, and K (z,y) is analogous to the
inverse of permittivity factor in a non-homogeneous media. In
the theory of partial differential equations it is proved that the
above equations along with the boundary condition given by
(8) give D*(x,y) and E*(z,y) uniquely.

Since V x E*(z,y) = 0 then E*(z,y) is conservative, and
it can be expressed as the gradient of a scalar function:

E*=VU (17)
Then the set of equations defined by (16) reduces to:
VK (z,y).VU(z,y)
V2U T,Yy)— : : =K T,y T,y (18)
(2,9) ey (2, 9)p(,y)
in which the operator V? is defined as:
0? 0?
2
=—+— 1
\Y% 92 + By (19)

The boundary conditions for D(x,y) imply that the gradient
of U(x,y) is zero on the boundary along the direction that is
normal to the boundary:

ﬁU(m,y) -n(z,y) =0, ¥Y(z,y) € Boundary of A (20)

in which 7A(x,y) is a unit vector normal to the boundary.
The above boundary conditions are known as Neumann type
boundary definition in the literature of partial differential
equations. For the case in which K (z,y) is constant, Equation
(18) reduces to the well known Poisson equation:

V2U(2,y) = K(z,y)p(z,y) Q1)
III. GENERALIZATION TO MULTIPLE DESTINATIONS

So far we have introduced the vector field based routing
method for the case where there is only one destination in the
network, and all the traffic generated by the nodes is sent to
that destination. While this is the case in many applications of
sensor networks, a more general case is where we have more
than one destination in the network.

In the case with a single destination, all the traffic generated
by sensors is sent to that destination; however, a complexity of
the case where we have several destinations is how to distribute
the load of the network among them. In the case of multiple
destinations, we write the optimization problem as:

Minimize J(D) = N K(x,y)|5($7y)\2dmdy
Subject to:

p,y) = r(z,y) — ity wid(a — 2:)3(y — vi)
D, (z,y) =0 ,Y(z,y) € Boundary of A

in which M is the number of destinations, (x;,y;) is the
location of ‘" destination and w; is a nonnegative weight of
the it" destination, which represents the amount of load that
is sinked at the i*" destination. Since in this case the load of
the network is received by the M destinations, we have:

M
Zwi = / r(z,y)dzdy = wy
i=1 A



This implies [, p(x,y)dzdy = 0.  In the case with multiple
destinations the optimization is both on 5(x, y) and the values
of w;. In this case, the paths starting from each point of the
network end at one of the destinations. Based on the paths,
we partition the area of the network into M disjoint sets
corresponding to the M destinations. Let 7; denote the set
for the i'" destination. Then a point (z, ) belongs to Tj if the
path corresponding to (z,y) ends at the destination .

We call T; the region of attraction of destination 7. It is
straightforward to verify that the region of attraction for each
destination is a connected set. This is because (x;,y;) € T},
and (x;,y;) belongs to every path that ends at the destination
i. Then if two points such as (z,y) and (2/,y’) both belong
to T3, and if p and p’ are their corresponding paths to the
it" destination respectively, then based on the suffix property
of paths the union of p and p’ is a connected subset of T;
containing both (z,y) and (z’,y’).

Based on the above definition of 7;, we can write the weight
of i" destination as:

wi= [ reg)dody
T;

i

(22)

The complexity of problem in the multiple destination case is
based on the fact that optimization is both on D(z,y), and
the weight values wy,ws,--- ,wps. If the weight values are
fixed, the following lemma can be stated:

Lemma 1: In the case of multiple destinations, if
wy,Wa, -+ ,Wpr, are fixed, the necessary and sufficient con-
dition for optimality of the cost function in (22) is:

V x E*(z,y) =0 (23)

in which

E*(x,y) :K(xvy)D*(may) (24)

The proof of this lemma is similar to the proof of Theorem 1
and Theorem 2. If the weights are given, the value of p(z,y)
is known, and the optimal solution of the problem is found by
solving the following PDE:

VAU (2,y) - SEEFEE = K(y)p(ny) o5

VU(z,y) - a(z,y) =0, ¥(z,y) € Boundary of A
and ultimately E(z,y) is obtained from E(z,y) = VU (z,y),
and D(z,y) is found from E(z,y).

If the weight values of the destinations are added to the
optimization variables of (22), the condition V x E*(z,y) = 0
is a necessary but not a sufficient condition for optimality
of the cost function. The following theorem gives the basic
idea to solve the optimization problem of (22), where we have
multiple destinations:

Theorem 3: If the value of potential function at the loca-
tions of M destinations is Uy, Us, ..., Upy, then the necessary
and sufficient conditions for the optimality of cost function in
(22) are:

—

x E(z,y) =0
i:Uja fOerS’L“]SM

S <

Proof- The first condition in the theorem is V x E (z,y) =
0. The proof for this condition is similar to case of having
a single destination. We assume this condition holds and we
show that the second condition is necessary and sufficient for
optimality.

In the forward proof, we show that for optimality of (22)
the value of the potential function should be the same at all
destinations. For this purpose, we use contradiction. Assume
for some ¢ and j, we have U; < U;. Then we prove that the
load distribution can be changed in the way of decreasing the
cost function. We need the following two identities throughout
the proof:

Identity 1: If c is a scalar function and F is a vector field,
then:

- —

V- (cF)=cV-F+F- Ve (26)

Identity 2: If A is a region in the plane with boundary 0 A,
and F is a vector field defined on A, then

F.dn
0A

/ V- ﬁdacdy = 27
A

in which dn is the differential vector normal to the boundary
of A pointing outward. The second identity is also known as
the Divergence Theorem in the vector calculus literature.

To continue the proof, we make a small positive change in
the weights of the i*" and the j*" destinations:

[ .
wé—wz—ke (28)
w; =w; — €

In other words, we increase the weight of the i*" destination

by € and decrease the weight of the j** destination by the
same amount. Assume D(z,y), E(z,y), U(z,y) and p(z,y)
represent the values of vector fields, the potential function and
and the density of sources before applying the above change
and D'(z,y), E'(z,y), U'(x,y), and p'(x,y) represent the
same quantities after applying the change. After this change,
the density of sources is:

p(x,y) = pla,y) —ed(@—w:)d(y —yi) +ed(w—2;)d(y —y;)

(29)
in which (z;,y;) is the location of the *" destination and
(z;,y;) is the location of the j* destination. Now we make
the following definitions:

th

D'(w,y) = D(x,y) +d(x,y)
E'(z,y) = E(z,y) + €(x,y) (30)
U/(J?,y) = U(a:,y) + u(a;, y)

It is easy to verify that:

V- dla,y) = —ed(x — )3y — yi) + (@ — ;)3(y — y;)
V xélz,y) =0
é(x,y) = Vu(,y)

€29



The change of cost function after applying the above modifi-
cation of weights is:

AJ = J(D'(x,y)) - J(D(z,y)) =
Ja K(@,y)|D'(z,y)|*dwdy — [, K(
By substituting the value of D’(x,y) we have
AJ =2 [, K(z,y)d(z,y)-

IA K(I,y)‘d(%,y)ﬁdl‘dy

Since we assume € is a very small value, we can ignore the
second term in the above equations, and we have:

AJ = 2fA z,y)d(x,y) - D(w, y)dedy =
2fA :c ,y)dxdy
Now we use Identlty 1 for ¢ = Ul(x,

6' (U(l"ay)g(l"ay)) = U($>y

By using the fact that £ (z, y)
can be written as:

Ci(fay) : E(I,y)

z,y)|D(z,y)|2dzdy
(32)

D(z,y)dzdy+ (33)

(34)

y) and F = d(x,y):

IV d(z,y) +d(z,y)- VU(z,y)
. (35)
= VU(x,y), the above equation

—

=V (U(z,y)d(x

-

(36)
By substituting this value for d(z,y)- E(z,y) in equation (34)
we have:

(U (z,y)d(x, y))dwdy—
x,y) V d(m y)dxdy

AJ_2fA v
2[4 U(

Now we use the Divergence Theorem given in Identity 2 for
F =U(z,y)d(x,y). We have:

(37

[ ¥ Wedapyists = § Ut ie.-dn 63
aA

in which dn is a differential vector normal to A4 and pointing
outward. Recall that the boundary conditions in the optimiza-
tion problem of (22) implies both D(z,y) and D'(z,y) have
zero components in the direction normal to the boundary of
A. So d(z,y) = D'(z,y) — D(x,y) also has zero normal
component at every point of the boundary of A. This causes
the inner product in the integrand of equation (38) to be 0.

Therefore
JARCEREE

On the other hand from equation (31) we have V- cf(m, y) =
—ed(x — x;)0(y — y;) + €d(x — x;)6(y — y;). Therefore:
J, Uz y V d(x y)daxdy =
—€ [, U(z,y)d(x — x;)0(y — yi)dzdy

y))dzdy =0 (39)

40)
JrefA U(z,y)é(xfzj)é(yfyj)d:rdy: (
—eU(xi,yi) + eU(wj,y5) = —e(U; — Uj)
By substituting (40) and (39) in (37) we get:
AJ = 2€(U,' — UJ) <0 41

and this ends the forward part of the proof. Now we continue
the proof of Theorem 3 in the backward part. From the forward

part of the proof we know if ﬁ(z, y) is the optimal solution of
(22), then its corresponding potential function takes the same
value at the locations of all destinations. Also for this load
vector field we have V x E(z,y) = 0.

Assume in addition to the optimal D(z,y), there exists
a D'(z,y) that satisfies V x E'(z,y) = 0 as well as the
constraints of the optimization problem given in (22). Also
assume the corresponding potential function of D’ (z,y) takes
the same value at the locations of all destinations. Then we
prove that D' (z,y) = D(z, ).

Let U(x,y), wy, wa, ..., wpr, and p(z, y) represent the quan-
tities of the optimal solution, and U’'(x,y), w},w), ..., w),
and p'(z,y) represent the similar quantities corresponding to

D'(x,y). We define:
&(z,y) = E(,y) - E'(z,y)
(I,y):D(I,y)—D/(I,y) 42
u(z.y) = Ula.y) — U'(a.y) )
0'([1,'7y) = ,O(I,y) - p/(:r, )
It is easy to verify that
V- d(z,y) = o(x,y)
V x ez, yl =0 (43)
é(z,y) = Vu(z,y)
Recall that
ple.y) = r(zy) = TI wid(a — 2)0(y )
pl(x,y) =r(z,y) = > imy wid(e — 2:)0(y — i)
Hence:
M
o(a,y) = =Y (wi —w)d(z —z:)o(x —yi) (44
i=1

which implies that o(z,y) is zero everywhere in the network
that is not a destination.

We use contradiction to prove D(z,y) = D'(z,y). If
D(z,y) # D' (x,y) then there exist some destinations for
which w; # wj. This is because of the fact that if for all
destinations we have w; = w;, we have p(z,y) = p'(z,y), and
therefore D(z,y) = D' (z, y) If we assume there exist some
destinations for which w; # w}, then we select the destination
j for which the corresponding value of w; — wé is minimum.
Since Zf\il(uil —wj) = 0, then w; — wj; < 0. Hence the
flux lines of d(x,y) exit this destination; this is because the
value of divergence of J(x,y) is positive at the location of
destination j:

-

Ved(xj,y;) = o(@j,y;) = —(wj—w;)d(x—x;)d(y—y;) >0

(45)
The flux lines exiting the destination j can end only at the
destinations for which the value of o(z,y) is negative. This is
because the value of divergence of d_)(ac7 y) should be negative
at a location that flux lines end. Since o (x, y) can take nonzero
values only at the locations of destinations, every flux line
exiting destinations j ends at a destination k for which wy —

wj, > 0, and hence o(zy,yx) < 0. Let L be one of such flux



lineg. Based on the definition of flux lines, L is tangent to both
of d(z,y) and é(z,y) at every point of it. Next we consider
the following value of the potential difference of destinations
j and k:

ey 05) o) = [ eey)-di @O

L

in which the integration is in the direction of the flux line
L (e.g., from the location of deftination j to the location of
destination k). In equation (46) dl is a differential vector along
L, and hence it has the same direction as €(x, y) at every point

of L. Therefore, we have:
&, y) - dl = |é(z,y)||dl] 47)

The definition of flux lines implies that é(x,y) is nonzero at
every point of L. Hence:

ela,y) - dl = ez, y)|dl| > 0 (48)
By comparing (48) and (46) we have:
w(zj,yj) — u(@r, yr) >0 (49)

Recall the fact that U(x,y) takes the same value in the
locations of all destinations and the same fact is true for
U'(x,y). Hence u(z,y) = U(x,y) — U'(x,y) takes the same
value in the locations of all destinations. The statement of
equation (49) contradicts this fact. Therefore we have w; = w;
for all destinations and hence 5(:5, y) = D'(z,y). QED.

The following is an intermediate result of Theorem 3:

Corollary 1: If we increase the weight of destination i by
a small amount €, and subtract that amount from the weight of
destination j, then the first order increment in the cost function
in (22) is:

(5J = 2€(Ui — UJ) (50)

We use Theorem 3 and Corollary 1 to introduce an iterative
algorithm that gives the optimal assignment of load among the
destinations. Assume we start with an arbitrary assignment of
the weights to the destinations. Weight assignment is subject
to the constraints that the sum of the weights should be the
total amount of the load in the network:

M
Zwi = / r(z,y)dzdy = wy
i=1 A

Given the initial weights, we solve the PDE given by (25) to
find U(x,y). Then if the value of U(x,y) is the same at all
destinations, we have found the optimal solution, otherwise
we continue the iterations by reassigning the weights.

We use Corollary 1 to reassign the weights. We know that
in order to improve the cost function we have to decrease
the weight of destinations with a high value of the potential
function and increase the weight of the destinations with small
value of potential. For this purpose, we use the average value
of the potential function at all destinations as a reference:

(S

B 1 M
U:MZUi

i=1

(52)

If a destination has a smaller potential value than the above
average, we increase its weight, otherwise, we decrease its
weight. We use deviation from the above average to specify
the amount of change for the weight of each destination.

Awi = ’Y(U - Ul)

wi = w; + Aw; (53)

in which ~y is a small positive step size, and w;, is the weight
of the i*" destination after applying the change. The above
change of weights preserves the property that Zfil w}; = wo.
We stop the iterations when the maximum of absolute value
of U — U; among all destinations is below a threshold:

max |U — U;| < & (54)

in which £ is a small positive value.

After finding the optimal weight values of all the destina-
tions, the final issue will be to find the corresponding regions
of attraction of the destinations. This is an easy problem to
solve: for every point (x, y) of the network, we follow the flux
lines of 5 until that flux line ends at one of the destinations
such as d. Then we declare point (x,y) belongs to the region
of attraction of destination d.

I'V. NUMERICAL EXAMPLES

In this section we present the numerical examples with
multiple destinations. The network is a 1 x 1 area, and we
assume the total load to be 100, which is uniformly distributed
in the network (i.e., r(z,y) = 100). We place 4 destinations
in the network. The destinations are located at: (z1,y1) =
(0.45,0.45), (z2,y2) = (0.75,0.75), (x3,y3) = (0.65,0.25),
and (IL‘4, y4) = (025, 075)

In the next step we divided the total load of 100 units
evenly among the destinations and assumed K(z,y) = 1.
This means that wy = we = w3z = wy = 25. Then we
solved the PDE equation for the potential function U(x,y),
and from it we found ﬁ(x, y). The resulting potential values
are shown in Fig. 2. The equipotential lines of the potential
function are shown in Fig. 3. The value of D(z,y) is shown
in Fig. 4 and the regions of attraction for the four destinations
are shown in Fig. 5. The value of potential function at the
destinations is: U; = 0.0723, Uy, = 0.0601, U3 = 0.0607,
and U, = 0.0571. The total value of the cost function in
this case is 4.88. Since the value of potential function is not
the same at all the locations of destinations, we know that
we can update the weight of destinations to reduce the cost
function. In the next step, we use the iterations of equation
(53) to update the weights of destinations in order to reduce
the cost function. The calculations show that the algorithm
converges to the weight values within 1 percent of the optimal
weights in 3 iterations. The values of optimal weights are:
wy; = 22.07, we = 25.50, ws = 25.94, and wy = 26.48.
With these weights, the cost function reduces to 4.07. We
have used the gradient step size v = 200, and for the stop
criterion of iterations, we used & = 0.001. Also, the value
of potential function at the destinations was calculated to be
Ui =U; =Us =U; =0.062.
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Fig. 2. The value of the potential function U(z,y) for the case with four
destinations

Fig. 3.
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Fig. 4. The value of 5(:0, y) at different places of the network for the case
with four destinations
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Fig. 5. The regions of attraction for different destinations in the case of four
destinations. Destinations are shown by circles.

V. CONCLUSION

In this paper, we presented a methodology for routing
and optimally designing the topology of a wireless sensor
network. We introduced a mathematical formulation based on
vector fields and we showed that in order to optimize the
communication cost in the network, we need to solve a set of
partial differential equations similar to Maxwell’s equations in
electrostatic theory. Furthermore, we defined the conservative
vector field related to the communication load in the network
and expressed it as the gradient of a scalar function. In the
case in which there are multiple destinations in the network,
we have to partition the network into regions of attraction of
the destinations. Each destination is responsible for collecting
messages of sensors in its region of attraction. We showed in
an optimal partitioning, the value of potential function at the
location of all destinations should be equal. Also, we gave
iterations that lead us to the optimal partitioning.
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