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✬

✫

✩

✪

Chapter 8

Frequency Modulation (FM)

FM was invented and commercialized after

AM. Its main advantage is that it is more

resistant to additive noise than AM.

Instantaneous Frequency

The instantaneous frequency of cos θ(t) is

ω(t) =
d

dt
θ(t) (1)

Motivational Example

Let θ(t) = ωct. The instantaneous fre-

quency of s(t) = cosωct is
d

dt
ωct = ωc.

FM Signal for Message m(t)

The instantaneous frequency of an FM wave with

carrier frequency ωc for a baseband message m(t)

is

ω(t) = ωc + kωm(t) (2)
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✬

✫

✩

✪

FM Signal Definition (cont.)

where kω is a positive constant called the

frequency sensitivity.

An oscillator whose frequency is controlled by

its input m(t) in this manner is called a voltage

controlled oscillator.

The angle of the FM signal, assuming the

value is 0 at t = 0, is

θ(t) =

∫ t

0

ω(τ) dτ = ωct+ θm(t) (3)

where

θm(t) = kω

∫ t

0

m(τ) dτ (4)

is the carrier phase deviation caused by m(t).

The FM signal generated by m(t) is

s(t) = Ac cos[ωct+ θm(t)] (5)
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✬

✫

✩

✪

Discrete-Time FM Modulator

A discrete-time approximation to the FM wave

can be obtained by replacing the integral by a

sum. The approximate phase angle is

θ(nT ) =

n−1
∑

k=0

ω(kT )T = ωcnT + θm(nT ) (6)

where

θm(nT ) = kωT

n−1
∑

k=0

m(kT ) (7)

The total carrier angle can be computed

recursively by the formula

θ(nT ) = θ((n−1)T )+ωcT +kωTm((n−1)T ) (8)

The resulting FM signal sample is

s(nT ) = Ac cos θ(nT ) (9)
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✬

✫

✩

✪

Single Tone FM Modulation

Let m(t) = Am cosωmt. Then

s(t) = Ac cos

(

ωct+
kωAm

ωm

sinωmt

)

(10)

The modulation index is defined as

β =
kωAm

ωm

=
peak frequency deviation

modulating frequency
(11)

Example: fc = 1 kHz, fm = 100 Hz,

fs = 80 kHz, β = 5
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✬

✫

✩

✪

Single Tone FM (cont.)

It can be shown that s(t) has the series exansion

s(t) = Ac

∞
∑

n=−∞

Jn(β) cos[(ωc + nωm)t] (12)

where Jn(β) is the n-th order Bessel function of

the first kind. These functions can be computed

by the series

Jn(x) =

∞
∑

m=0

(−1)m
(

1
2x

)n+2m

m!(n+m)!
(13)

Clearly, the spectrum of the FM signal is much

more complex than that of the AM signal.

• There are components at the infinite set of

frequencies {ωc + nωm; n = −∞, · · · ,∞}

• The sinusoidal component at the carrier

frequency has amplitude J0(β) and can

actually become zero for some β.

8-5



✬

✫

✩

✪

Narrow Band FM Modulation

The case where |θm(t)| ≪ 1 for all t is called

narrow band FM. Using the approximations

cosx ≃ 1 and sinx ≃ x for |x| ≪ 1, the FM signal

can be approximated as:

s(t) = Ac cos[ωct+ θm(t)]

= Ac cosωct cos θm(t)−Ac sinωct sin θm(t)

≃ Ac cosωct−Acθm(t) sinωct (14)

or in complex notation

s(t) ≃ Acℜe
{

ejωct[1 + jθm(t)]
}

(15)

This is similar to the AM signal except that the

discrete carrier component Ac cosωct is 90
◦ out of

phase with the sinusoid Ac sinωct multiplying the

phase angle θm(t). The spectrum of narrow band

FM is similar to that of AM.

8-6



✬

✫

✩

✪

The Bandwidth of an FM Signal

The following formula, known as Carson’s rule is

often used as an estimate of the FM signal

bandwidth:

BT = 2(∆f + fm) Hz (16)

where ∆f is the peak frequency deviation

and fm is the maximum baseband message

frequency component.

Example

Commercial FM signals use a peak frequency

deviation of ∆f = 75 kHz and a maximum

baseband message frequency of fm = 15 kHz.

Carson’s rule estimates the FM signal bandwidth

as BT = 2(75 + 15) = 180 kHz which is six times

the 30 kHz bandwidth that would be required for

AM modulation.
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✬

✫

✩

✪

FM Demodulation by a Frequency

Discriminator

A frequency discriminator is a device that

converts a received FM signal into a voltage that

is proportional to the instantaneous frequency of

its input without using a local oscillator and,

consequently, in a noncoherent manner.

An Elementary Discriminator

Bandpass

Filter

f

0

= f

c

��

Envelope

Detector
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s(t) m

0

(t)
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f

f

0

jG(f)j
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✬

✫

✩

✪

Elementary FM Discriminator

(cont.)

• When the instantaneous frequency changes

slowly relative to the time-constants of the

filter, a quasi-static analysis can be used.

• In quasi-static operation the filter output has

the same instantaneous frequency as the

input but with an envelope that varies

according to the amplitude response of the

filter at the instantaneous frequency.

• The amplitude variations are then detected

with an envelope detector like the ones used

for AM demodulation.

8-9



✬

✫

✩

✪

An FM Discriminator Using the

Pre-Envelope

When θm(t) is small and band-limited so that

cos θm(t) and sin θm(t) are essentially

band-limited signals with cutoff frequencies less

than ωc, the pre-envelope of the FM signal is

s+(t) = s(t) + jŝ(t) = Ace
j(ωct+θm(t)) (17)

The angle of the pre-envelope is

ϕ(t) = arctan[ŝ(t)/s(t)] = ωct+ θm(t) (18)

The derivative of the phase is

d

dt
ϕ(t) =

s(t)
d

dt
ŝ(t)− ŝ(t)

d

dt
s(t)

s2(t) + ŝ2(t)
= ωc + kωm(t)

(19)

which is exactly the instantaneous frequency.

This can be approximated in discrete-time by

using FIR filters to form the derivatives and

Hilbert transform. Notice that the denominator is

the squared envelope of the FM signal.
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✬

✫

✩

✪

Discriminator Using the Pre-Envelope

(cont.)

This formula can also be derived by observing

d

dt
s(t) =

d

dt
Ac cos[ωct+ θm(t)]

= −Ac[ωc + kωm(t)] sin[ωct+ θm(t)]

d

dt
ŝ(t) =

d

dt
Ac sin[ωct+ θm(t)]

= Ac[ωc + kωm(t)] cos[ωct+ θm(t)]

so

s(t)
d

dt
ŝ(t)− ŝ(t)

d

dt
s(t) = A2

c [ωc + kωm(t)]

× {cos2[ωct+ θm(t)] + sin2[ωct+ θm(t)]}

= A2
c [ωc + kωm(t)] (20)

The bandwidth of an FM discriminator must be

at least as great as that of the received FM signal

which is usually much greater than that of the

baseband message. This limits the degree of noise

reduction that can be achieved by preceding the

discriminator by a bandpass receive filter.
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✬

✫

✩

✪

A Discriminator Using the Complex Envelope

The complex envelope is

s̃(t) = s+(t)e
−jωct = sI(t) + j sQ(t) = Ace

jθm(t) (21)

The angle of the complex envelope is

ϕ̃(t) = arctan[sQ(t)/sI(t)] = θm(t) (22)

The derivative of the phase is

d

dt
ϕ̃(t) =

sI(t)
d

dt
sQ(t)− sQ(t)

d

dt
sI(t)

s2I(t) + s2Q(t)
= kωm(t)

(23)
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✬

✫

✩

✪

Using a Phase-Locked Loop for FM

Demodulation

A device called a phase-locked loop (PLL) can be

used to demodulate an FM signal with better

performance in a noisy environment than a

frequency discriminator. The block diagram of a

discrete-time version of a PLL is shown in the

figure below.
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✬

✫

✩

✪

PLL Analysis

The PLL input shown in the figure is the noisless

FM signal

s(nT ) = Ac cos[ωcnT + θm(nT )] (24)

This input is passed through a Hilbert transform

filter to form the pre-envelope

s+(nT ) = s(nT ) + jŝ(nT ) = Ace
j[ωcnT+θm(nT )]

(25)

The pre-envelope is multiplied by the output of

the voltage controlled oscillator (VCO) block.

The input to the z−1 block is the phase of the

VCO one sample into the future which is

φ((n+ 1)T ) = φ(nT ) + ωcT + kvTy(nT ) (26)

Starting at n = 0 and iterating the equation, it

follows that

φ(nT ) = ωcnT + θ1(nT ) (27)
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✬

✫

✩

✪

PLL Analysis (cont. 1)

where

θ1(nT ) = θ(0) + kvT

n−1
∑

k=0

y(kT ) (28)

The VCO output is

v(nT ) = e−jφ(nT ) = e−j[ωcnT+θ1(nT )] (29)

The multiplier output is

p(nT ) = Ace
j[θm(nT )−θ1(nT )] (30)

The phase error can be computed as

θm(nT )− θ1(nT ) = arctan

[

ℑm{p(nT )}

ℜe{p(nT )}

]

(31)

This is shown in the figure as being computed by

the C library function atan2(y,x) which is a four

quadrant arctangent giving angles between −π

and π. The block consisting of the multiplier and

arctan function is called a phase detector.
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✬

✫

✩

✪

PLL Analysis (cont. 2)

A less accurate, but computationally simpler,

estimate of the phase error when the error is

small is

ℑm{p(nT )} = ŝ(nT ) cos[ωcnT + θ1(nT )]

−s(nT ) sin[ωcnT + θ1(nT )] (32)

= Ac sin[θm(nT )− θ1(nT )]

≃ Ac[θm(nT )− θ1(nT )] (33)

The phase detector output is applied to the

loop filter which has the transfer function

H(z) = α+
β

1− z−1
= (α+ β)

1− α
α+β

z−1

1− z−1
(34)

The accumulator portion of the loop filter which

has the output σ(nT ) enables the loop to track

carrier frequency offsets with zero error. It will be

shown shortly that the output y(nT ) of the loop

filter is an estimate of the transmitted message

m(nT ).
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✬

✫

✩

✪

Linearized Model for PLL

The PLL is a nonlinear system because of the

characteristics of the phase detector. If the

discontinuities in the arctangent are ignored, the

PLL can be represented by the linearized model

shown in the following figure.
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The transfer function for the linearized PLL is

L(z) = Y (z)
Θm(z) =

H(z)

1+H(z) kvTz−1

1−z−1

= (1−z−1)(α+β−αz−1)
1−[2−(α+β)kvT ]z−1+(1−αkvT )z−2
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✬

✫

✩

✪

Proof that the PLL is an FM

Demodulator

At low frequencies, which corresponds to z ≃ 1,

L(z) can be approximated by

L(z) ≃
z − 1

kvT
(36)

Thus

Y (z) ≃ Θm(z)
z − 1

kvT
(37)

and in the time-domain

y(nT ) ≃
θm((n+ 1)T )− θm(nT )

kvT
(38)

Using the formula on slide 8-3 for θm gives

y(nT ) ≃
kω
kv

m(nT ) (39)

This last equation demonstrates that the PLL is

an FM demodulator under the appropriate

conditions.
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✬

✫

✩

✪

Comments on PLL Performance

• The frequency response of the linearized loop

has the characteristics of a band-limited

differentiator.

• The loop parameters must be chosen to

provide a loop bandwidth that passes the

desired baseband message signal but is as

small as possible to suppress out-of-band

noise.

• The PLL performs better than a frequency

discriminator when the FM signal is

corrupted by additive noise. The reason is

that the bandwidth of the frequency

discriminator must be large enough to pass

the modulated FM signal while the PLL

bandwidth only has to be large enough to

pass the baseband message. With wideband

FM, the bandwidth of the modulated signal

can be significantly larger than that of the

baseband message.
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✬

✫

✩

✪

Bandwidth of FM PLL vs. Costas

Loop

The PLL described in this experiment is very

similar to the Costas loop presented in Chapter 6

for coherent demodulation of DSBSC-AM.

However, the bandwidth of the PLL used for FM

demodulation must be large enough to pass the

baseband message signal, while the Costas loop is

used to generate a stable carrier reference signal

so its bandwidth should be very small and just

wide enough to track carrier drifts and allow a

reasonable acquisition time.
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✬

✫

✩

✪

Laboratory Experiments for

Frequency Modulation

Initialize the DSK as before and use a 16 kHz

sampling rate for these experiments.

Chapter 8, Experiment 1
Making an FM Modulator

Make an FM modulator using equations (8) and

(9) on slide 8-3.

1. Use the carrier frequency fc = 1000 Hz.

2. Set the signal generator to output a baseband

message, m(t), which is a sine wave with

amplitude 1 volt and frequency 100 Hz.

Connect this signal to the left channel of the

codec.

3. In your DSK program, read message samples

from the left channel of the codec and convert

them to floating-point values.

4. Try kω = 0.2 in your program.
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✬

✫

✩

✪

Experiment 8.1

FM Modulator (cont. 1.)

5. Remember to limit the carrier angle to the

range [0, 2π).

6. Send the FM modulated message samples to

the left codec output channel and observe the

time signal on the oscilloscope. Remember to

scale the samples to use a large portion of the

dynamic range of the DAC. The signal should

resemble the figure on Slide 8-4.

7. Also, use the FFT capability of the

oscilloscope to see the signal spectrum.

8. Vary kω and observe the resulting time

signals and spectra. You can vary kω in your

program or you can change the message

amplitude on the signal generator.
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✬

✫

✩

✪

Chapter 8, Experiment 2
Spectrum of an FM Signal

1. Set the signal generator to FM modulate an

fc = 4 kHz sinusoidal carrier with an

fm = 100 Hz sine wave by doing the following

steps:

(a) Make sure the signal type is set to a sine

wave.

(b) Press the blue “SHIFT” button and then

the “AM/FM” button.

(c) Set the carrier frequency by pressing the

“FREQ” button and setting the frequency

to 4 kHz.

(d) Set the modulation frequency by pressing

the “RATE” button and setting it to 100

Hz.
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✬

✫

✩

✪

Experiment 8.2

FM Spectrum (cont. 1.)

(e) Adjust the modulation index by pressing

the “SPAN” button and setting a value.

The displayed value is related to, but not,

the modulation index β.

2. Connect the FM output signal to the

oscilloscope and observe the resulting

waveforms as you vary the frequency

deviation.

3. Use the FFT function of the oscilloscope to

observe the spectrum of the FM signal by

performing the following steps:

(a) Turn off the input channels to disable the

display of the time signals.

(b) Press “Math.”

(c) Under the oscilloscope display screen,

i. Set “Operator” to FFT.

ii. Set “Source 1” to your input channel.

iii. Set “Span” to 2.00 kHz.
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✬

✫

✩

✪

Experiment 8.2

FM Spectrum (cont. 2.)

iv. Set “Center” to 4.00 kHz.

v. Use the “Horizontal” knob at the top

left of the control knob section to set

the “FFT Resolution” to “763 mHz”

(0.763 Hz) or “381 mHz” (0.381 Hz).

Note: You can turn off the FFT by

pressing “Math” again.

4. Watch the amplitude of the 4 kHz carrier

component on the scope as the modulation

index is increased from 0. Remember that

this component should be proportional to

J0(β).

5. Increase the modulation index slowly from 0

until the carrier component becomes zero for

the first and second times and record the

displayed SPAN values. Compare these

displayed values with the theoretical values of

β for the first two zeros of J0(β).
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✬

✫

✩

✪

Experiment 8.2 FM Spectrum (cont. 3)

You can generate values of the Bessel

function by using the series expansion given

on Slide 8-5 or with MATLAB.

6. Plot the theoretical power spectra for a

sinusoidally modulated FM signal with β = 2,

5, and 10. Compare them with the spectra

observed on the oscilloscope.

Chapter 8, Experiment 3

FM Demodulation Using a Frequency

Discriminator

• Write a C program that implements the

frequency discriminator described on Slide

8-12. Assume that:

– the carrier frequency is 4 kHz,

– the baseband message is band limited with

a cutoff frequency of 500 Hz,

– the sampling rate is 16 kHz.

8-26



✬

✫

✩

✪

Experiment 8.3 Discriminator

Implementation (cont. 1)

Use REMEZ87.EXE, WINDOW.EXE, or

MATLAB to design the Hilbert transform

and FIR differentiation filters. Use enough

taps to approximate the desired Hilbert

transform frequency response well from 1200

to 6800 Hz. Try a differentiator bandwidth

extending from 0 to 8000 Hz.

WINDOW.EXE gives good differentiator

designs. (Be sure to match the delays of

your filters in your implementation.)

• Synchronize the sample processing loop with

the transmit ready flag (XRDY) of McBSP1.

Read samples from the ADC, apply them to

your discriminator, and write the output

samples to the DAC.
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✬

✫

✩

✪

Experiment 8.3 Discriminator

Implementation (cont. 2)

• Use the signal generator to create a

sinusoidally modulated FM signal as you did

for the FM spectrum measurement

experiments. Attach the signal generator to

the DSK line input and observe your

demodulated signal on the oscilloscope to

check that the program is working.

• Modify your program to add Gaussian noise

to the input samples and observe the

discriminator output as you increase the noise

variance. Listen to the noisy output with the

PC speakers. Does the performance degrade

gracefully as the noise gets larger?
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✬

✫

✩

✪

Chapter 8, Experiment 4
Using a Phase-Locked Loop for FM

Demodulation

Implement a PLL like the one shown on Slide

8-13 to demodulate a sinusoidally modulated FM

signal with the same parameters used previously

in this experiment. Let α = 1 and choose β to be

a factor of 100 or more smaller than α.

• Compute and plot the amplitude response of

the linearized loop using the equation (35) on

slide 8-17 for different loop parameters until

you find a set that gives a reasonable

response.

• Theoretically compute and plot the time

response of the linearized loop to a unit step

input for your selected set of parameters by

iterating a difference equation corresponding

to the transfer function.
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✬

✫

✩

✪

Experiment 8.4 PLL Demodulator

(cont.)

• Write a C program to implement the PLL.

Test this demodulator by connecting an FM

signal from the signal generator to the DSK

line input and observing the DAC output on

the oscilloscope.

• See if your PLL will track carrier frequency

offsets by changing the carrier frequency on

the signal generator slowly and observing the

output. See how large an offset your loop will

track. Observe any differences in behavior

when you change the carrier frequency

smoothly and slowly or make step changes.

• Modify your program to add Gaussian noise

to the input samples and observe the

demodulated output as the noise variance

increases. How does the quality of the

demodulated output signal compare with that

of the frequency discriminator at the same

SNR.

8-30


